PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Control of the CET Localization in Continuously Cast Copper and Copper Alloys’ Ingots

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A brief description of the innovative mathematical method for the prediction of CET – localization in solidifying copper and copper alloys’ ingots is presented. The method is to be preceded by the numerical simulation of both temperature field and thermal gradient filed. All typical structural zones were revealed within the copper and copper alloys’ massive ingots or rods manufactured by continuous casting. The role of thermal gradient direction for the single crystal core formation has been enlightened. The definition for the index describing proportion between volume fraction of the columnar structure and volume fraction of the equiaxed structure has been formulated by means of the interpretation of some features of the liquidus isotherm velocity course. An attempt has been undertaken to apply the developed mathematical method for the structural zones prediction in the rods solidifying under industrial conditions. An industrial application has been shown, that is, it was explained why the innovative rods should be assigned to the overhead conductors in the electric tractions.
Rocznik
Strony
91--99
Opis fizyczny
Bibliogr. 27 poz., il., wykr.
Twórcy
  • KGHM Polska Miedź S.A., Lubin, Poland
  • Institute of Metallurgy and Materials Science, PAS, Kraków, Poland
Bibliografia
  • [1] Kurz, W., Fisher, D.J. (1998). Heat Extraction. In: Fundamentals of Solidification (pp. 5-19). Fourth Edition. CRC Press.
  • [2] McFadden, S., Browne, D.J., & Banaszek, J. (2006). Prediction of the formation of an equiaxed zone ahead of a columnar front in binary alloys castings: indirect and direct methods. Materials Science Forum. 508, 325-330. DOI:10.4028/www.scientific.net/MSF.508.325.
  • [3] Wołczyński, W. (2010). Constrained/unconstrained solidification within the massive cast steel/iron ingots. Archives of Foundry Engineering. 10(2), 195-202.
  • [4] Zimmermann, G., Sturz, L., Li, Y.Z., Nguyen-Thi, H., MangelinckNöel, N., Fleurisson, R., Guillemot, G., Gandin, Ch.A., McFadden, S., Mooney, R.P., Voorhees, P., Roosz, A., Beckermann, C., Karma, A., Warnken, N., Perchat, E., Grün, G., Grohn, M., Poitrault, I., Toth, D. & Sillekens, W. (2018). Columnar and equiaxed solidification within the framework of the ESA MAP project CET-SOL. In the International Conference „Solidification and Gravity 2018”, 3-6 September 2018 (pp. 17-26). Miskolc – Lillafüred, Hungary.
  • [5] Flood, S.C. & Hunt, J.D. (1998). Columnar to equiaxed transition. Metals Handbook. 15, 130-135.
  • [6] M’Hamdi, M., Bobadilla, M., Combeau, H., Lesoult, G. (1998). Numerical modeling of the columnar to equiaxed transition in continuous casting of steel. In Conference on Modelling of Casting, Welding and Solidification Processes VIII, 7-12 June 1998 (pp. 375-382). San Diego, California, USA.
  • [7] Dupouy, M.D., Camel, D., Mazille, J.E. & Hugon, I. (2000). Columnar to equiaxed transition in a refined Al-Cu alloy under diffusive and convective transport conditions. Materials Science Forum. 329-330, 25-30. https://doi.org/10.4028/www.scientific.net/MSF.329-330.25.
  • [8] Billia, B., Gandin, Ch. A., Zimmermann, G., Browne, D.J. & Dupouy, M.D. (2005). Columnar - equiaxed transition in solidification processes: the ESA-MAP CETSOL project. Microgravity Science and Technology. 16, 20-25. https://doi.org/10.1007/BF02945939.
  • [9] Yamazaki, M., Natsume, Y., Harada, H. & Ohsasa, K. (2006). Numerical simulation of solidification structure formation during continuous casting in Fe–0.7mass%C alloy using cellular automaton method. The Iron and Steel Institute of Japan – International. 46, 903-908. https://doi.org/10.2355/isijinternational.46.903.
  • [10] Gandin, Ch.A., Mosbah, S., Volkman, Th. & Herlach, D.M. (2008). Experimental and numerical modelling of equiaxed solidification in metallic alloys. Acta Materialia. 56(13), 3023-3035. DOI:10.1016/j.actamat.2008.02.041.
  • [11] Kumar, A. & Dutta, P. (2009). Numerical studies on columnar-to-equiaxed transition in directional solidification of binary alloys. Journal of Material Science. 44(15), 3952-3061. https://doi.org/10.1007/s10853-009-3539-z.
  • [12] Könözsy, L., Ishmurzin, A., Grasser, M., Wu, M., Ludwig, A., Tanzer, R. & Schützenhofer, W. (2010). Columnar to equiaxed transition during ingot casting using ternary alloy composition. Materials Science Forum. 649, 349-354. DOI:10.4028/www.scientific.net/MSF.649.349.
  • [13] Lorbiecka, A. & Šarler, B. (2010). A Sensitivity study of grain growth model for prediction of ECT and CET transformations in continuous casting of steel. Materials Science Forum. 649, 373-378. https://doi.org/10.4028/www.scientific.net/MSF.649.373.
  • [14] Mirihanage, W.U., Dai, H., Dong, H. & Browne, D.J. (2013). Computational modeling of columnar to equiaxed transition in alloy solidification. Advanced Engineering Materials. 15(4), 216-229. https://doi.org/10.1002/adem.201200220.
  • [15] Gandin, Ch.A., Billia, B., Zimmermann, G., Browne, D.J., Dupouy, M.D., Guillemot, G., Nguyen-Thi, H., Mangelinck-Noël, N., Reinhart, G., Sturz, L., McFadden, S., Banaszek, J., Fautrelle, Y., Zaidat, K. & Ciobanas, A. (2006). Columnar-to-equiaxed transition in solidification processing (CET-SOL): a project of the European space agency (ESA) - microgravity applications promotion programme. Materials Science Forum. 508, 393-404. https://doi.org/10.4028/www.scientific.net/MSF.508.393.
  • [16] Noeppel, A., Budenkova, O., Zimmermann, G., Sturz, L., Mangelinck-Nöel, N., Jung, H., Nguyen-Thi, H., Billia, B., Gandin, Ch.A. & Fautrelle, Y. (2009). Numerical modeling of columnar to equiaxed transition – application to microgravity experiments. International Journal of Cast Metals Research, 22, 34-38. https://doi.org/10.1179/136404609X367272.
  • [17] Lemoisson, F., McFadden, S., Rebow, M., Browne, D.J., Froyen, L., Voss, D., Jarvis, D.J., Kartavykh, A., Rex, S., Herfs, W., Groethe, D., Lapin, J., Budenkova, O., Etay, J. & Fautrelle, Y. (2010). The development of a microgravity experiment involving columnar to equiaxed transition for solidification of a Ti-Al based alloy. Materials Science Forum. 649, 17-22. DOI:10.4028/www.scientific.net/MSF.649.17.
  • [18] McFadden, S., Browne, D.J., Sturz, L. & Zimmermann, G. (2010). Analysis of a microgravity solidification experiment for columnar to equiaxed transitions with modeling results. Materials Science Forum. 649, 361-366. https://doi.org/10.4028/www.scientific.net/MSF.649.361.
  • [19] Zimmermann, G., Sturz, L., Billia, B., Mangelinck-Nöel, N., Liu, D.R. Nguyen-Thi, H., Bergeon, N., Gandin, Ch.A., Browne, D.J., Beckermann, C., Tourret, D. & Karma, A. (2014). Columnar-to-equiaxed transition in solidification processing of AlSi7 alloys in microgravity - the CET-SOL project. Materials Science Forum. 790-791, 12-21. https://doi.org/10.4028/www.scientific.net/MSF.790-791.12.
  • [20] Huang, C., Hecht, U., Zollinger, J., Zaloznik, M., Viardin, A., Cisternas, M. (2018). Gravity dependent columnar-to-equiaxed transition in TiAl alloys: solidification of Ti-46Al-8Nb in hyper gravity and multi-physics modeling. In International Conference „Solidification and Gravity 2018”, 3-6 September 2018 (pp. 42). Miskolc – Lillafüred, Hungary.
  • [21] Wołczyński, W., Ivanova, A., Kwapisiński, P. & Olejnik, E. (2017). Structural transformations versus hard particles motion in the brass ingots. Archives of Metallurgy and Materials. 62(4), 2461-2467. DOI: 10.1515/amm-2017-0362.
  • [22] Kwapisiński, P., Lipnicki, Z., Ivanova, A. & Wołczyński, W. (2017). Role of the structural and thermal peclet numbers in the brass continuous casting. Archives of Foundry Engineering. 17(2), 49-54. DOI: 10.1515/afe-2017-0050.
  • [23] Wołczyński, W., Kwapisiński, P., Kania, B., Wajda, W., Skuza, W. & Bydałek, A.W. (2015). Numerical model for solidification zones’ selection in the large ingots. Archives of Foundry Engineering, 15(4), 87-90. DOI: 10.1515/afe-2015-0085.
  • [24] Wołczyński, W., Ivanova, A., Kwapisiński, P. & Sztwiertnia, K. (2018). Effect of Pulling Rate on the Structural Zones’ Localization in the Continuously Cast Brass Ingot. International Conference „Solidification and Gravity 2018”, 3-6 September 2018 (pp. 131-137). Miskolc – Lillafüred, Hungary.
  • [25] Szajnar, J. & Wróbel, T. (2008). Inoculation of pure aluminum aided by electromagnetic field. Archives of Foundry Engineering. 8(1), 123-132. ISSN (1897-3310).
  • [26] Rzadkosz, S., Kranc, M., Garbacz-Klempka, A., Piękoś, M. Kozana, J. & Cieślak, W. (2014). Research on technology of alloyed copper casting. Archives of Foundry Engineering. 14(2), 79-84. DOI:10.2478/afe-2014-0041.
  • [27] Piękoś, M., Garbacz-Klempka, A., Kozana, J. & Żak, P.L. (2020). Impact of Ti and Fe on the microstructure and properties of copper and copper alloys. Archives of Foundry Engineering. 20(4), 83-90. ISSN (2299-2944).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43f481e4-914c-4ac7-9087-ba46140dd261
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.