PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effects of the Polymers as a Sacrificed Material for the Hydroxyapatite Powder Synthesized by an Ultrasonic Spray Pyrolysis Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The HAp (hydroxyapatite) excellent ion exchange resin and has adsorption properties of heavy metals and organic materials. It is used as an adsorption material and as an organic drug-delivery material due to these characteristics, that are essentially controlled the specific surface area. In this paper, the specific surface area was controlled by adding polymers of polyvinylpyrrolidone (PVP), polystyrene beads (PSB), and polyethylene glycol (PEG). Through the USP process, the HAp powder is able to synthesize into the spherical shape, specific surface area, and pore were controlled by the properties of the polymers.
Twórcy
autor
  • Dankook University, Department of Energy Engineering, Cheonan 31116, Republic of Korea
autor
  • Dankook University, Department of Energy Engineering, Cheonan 31116, Republic of Korea
Bibliografia
  • [1] V. Uskoković, D.P. Uskoković, J. Biomed. Mater. Res. B Appl. Biomater. 96 (1), 152-191 (2011).
  • [2] H. Wang, Y. Li, Y. Zuo, J. Li, S. Ma, L. Cheng, Biomaterials 28 (22), 3338-3348 (2007).
  • [3] M. Aizawa, T. Hanazawa, K. Itatani, F.S. Howell, A. Kishioka, Mater. Sci. 34 (12), 2865-2873 (1999).
  • [4] T.M. Gabriel Chu, David G. Orton, Scott J. Hollister, Stephen E. Feinberg, John W. Halloran, Biomaterials 23 (5), 1283-1293 (2002).
  • [5] Karin A. Hing, Serena M. Best, K. Elizabeth Tanner, William Bonfield, Peter A. Revell, J. Biomed. Mater. Res. Part A. 68 (1), 187-200 (2004).
  • [6] J. Reichert, J.G.P. Binner, J. Mater. Sci. 31 (5), 1231-1241 (1996).
  • [7] A. Nayak, B. Bhushan, Mater. Today: Proc. 46, 11029-11034 (2021).
  • [8] R. Stefini, G. Esposito, B. Zanotti, C. Iaccarino, M.M. Fontanella, F. Servadei, Surg. Neurol. Int. 4 (2013).
  • [9] L. Yang, X. Ning, K. Chen, H. Zhou, Ceram. Int. 33 (3), 483-489 (2007).
  • [10] M. Su, D.C.W. Tsang, X. Ren, Q. Shi, J. Tnag, H. Zhang, L. Kong, G. Song, D. Chen, Environ. Pollut. 254, 112891 (2019).
  • [11] J. Roh, M. Yang, K.J. Lee, J. Powder Mater. 29(6), 485-491 (2022).
  • [12] S. Lee, J. Roh, M. Kim, J. Lee, K.J. Lee, J. Mater. Sci. 57 (38), 18000-18013 (2022).
  • [13] S.C. Tsai, Y.L. Song, C.S. Tsai, C.C. Yang, W.Y. Chiu, H.M. Lin, J. Mater. Sci. 39 (11), 3647-3657 (2004).
  • [14] A.A.G. Santiago, C.R.R. Almeida, R.L. Tranquilin, R.M. Nascimento, C.A. Paskocimas, E. Longo, F.V Motta, M.R.D. Bomio, Ceram. Int. 44 (4), 3775-3786 (2018).
  • [15] A. Nakaruk, C.C. Sorrell, J. Coat. Technol. Res. 7 (5), 665-676 (2010).
  • [16] W.H. Shu, K.S. Suslick, J. Am. Chem. Soc. 127 (34), 12007-12010 (2005).
  • [17] Z. Kou, C. Wang, Mater. Adv. 3 (12), 4839-4850. (2022).
  • [18] J. Chen, S.K. Spear, J.G. Huddleston, R.D. Rogers, Green Chem. 7 (2), 64-82 (2005).
  • [19] E. Thormann, A.C. Simonsen, P.L. Hansen, O.G. Mouritsen, J. Am. Chem. Soc. 24 (14), 7278-7284 (2008).
  • [20] H. Kim, Y. Choi, Y. Park, R.C. Pawar, Y.H. Choa, C. Lee, Curr. Appl. Phys. 17 (4), 433-441 (2017).
  • [21] U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6 (9), 534-534 (2011).
  • [22] G.A. Ilevbare, H. Liu, K.J. Edgar, L.S. Taylor, Cryst. Growth Des. 12 (6), 3133-3143 (2012).
  • [23] Z. Song, Z. Yin, Z. Yang, C. Li, Z. Yang, C. Ning, D. Zhou, R. Wang, Y. Xu, J. Qiu, Mater. Sci. Eng. C, 32 (5), 1032-1036 (2012)
  • [24] J.S. Cho, S.H. Rhee, J. Eur. Ceram. Soc. 33 (2), 233-241 (2013).
Uwagi
The present research was supported by the research fund of Dankook University in 2022.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43f277c2-1f9c-4db5-805e-86511dee1da2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.