PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the required energy storage capacity for balancing the load schedule and managing the electric energy demand of an apartment building

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The rapid and voluminous development of renewable generation, and its stochastic nature, creates problems in terms of maintaining frequency and balance in the power system. In this work, demand response management and the use of the concept of demand response are discussed in detail. The potential of using prosumers to maintain the power balance in the power system is considered. The analysis of prosumers was carried out on the basis of a study of load schedules of typical consumers with software that forms schedules taking into account socio-demographic characteristics.
Wydawca
Rocznik
Strony
342--349
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Czestochowa University of Technology, Department of Production Engineering and Safety, Armii Krajowej 19B, 42-201 Czestochowa, Poland
  • Power Station dep., National Technical University “Kharkiv Politechnic Institute”, Kyrpichova street 2, Kharkiv 61002, Ukraine
  • Power Station dep., National Technical University “Kharkiv Politechnic Institute”, Kyrpichova street 2, Kharkiv 61002, Ukraine
  • Power Station dep., National Technical University “Kharkiv Politechnic Institute”, Kyrpichova street 2, Kharkiv 61002, Ukraine
  • Electricity Transmission dep., National Technical University “Kharkiv Politechnic Institute”, Kyrpichova street 2, Kharkiv 61002, Ukraine
  • Electricity Supply and Energy Management dep., State Biotechnological University, Rizdviana street 19, Kharkiv 61002, Ukraine
autor
  • Cyclone Manufacturing Inc, Mississauga, Ontario, Canada
autor
  • Department of Electrical Engineering and Electromechanics Named after Prof. V.V. Ovharov, Dmytro Motornyi Tavria State Agrotechnological University, 69600, Zaporizhia, Ukraine
  • Czestochowa University of Technology, Department of Production Engineering and Safety, Armii Krajowej 19B, 42-201 Czestochowa, Poland
Bibliografia
  • 1. Agwan, U., Poolla, K., Spanos, C. J., 2021. Optimal Composition of Prosumer Aggregations, IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), pp. 1–5. DOI: 10.1109/ISGTEurope52324.2021.9639902.
  • 2. Al_Issa, H., Drechny, M., Trrad, I., Qawaqzeh, M., Kuchanskyy, V., Rubanenko, O., Kudria, S., Vasko, P., Miroshnyk, O., Shchur, T., 2022. Assessment of the Effect of Corona Discharge on Synchronous Generator Self-Excitation, Energies, 15(6), DOI: 10.3390/en15062024
  • 3. Antal, M., Toderean, L., Cioara, T., Anghel, I., 2022. Hybrid Deep Neural Network Model for Multi-Step Energy Prediction of Prosumers, Appl. Sci., 12(11), DOI: 10.3390/app12115346.
  • 4. Balázs, I., Fodor, A., Magyar, A., 2021. Quantification of the Flexibility of Residential Prosumers, Energies, 14, 4860, DOI: 10.3390/en14164860.
  • 5. Drabecki, M., Toczyłowski, E., 2022. Multi-Objective Approach for Managing Uncertain Delivery from Renewable Energy Sources within a Peer-to-Peer Energy Balancing Architecture, Energies, 15(3), DOI: 10.3390/en15030675.
  • 6. Espe, E., Potdar, V., Chang E., 2018. Prosumer Communities and Relationships in Smart Grids: A Literature Review, Evolution and Future Directions, Energies, 11(10), DOI: 10.3390/en11102528.
  • 7. Fedorchuk, S., Ivakhnov, A., Bulhakov, O., Danylchenko, D., 2020. Optimization of Storage Systems According to the Criterion of Minimizing the Cost of Electricity for Balancing Renewable Energy Sources, IEEE KhPI Week on Advanced Technology (KhPIWeek), 519-525. DOI: 10.1109/KhPIWeek51551.2020.9250155.
  • 8. Ikonnikova, S., Schlüter A., Brandner, B., 2022. The Rising Role of Prosumers in the Energy System, pp. 255-269. DOI: 10.3139/9783446471757.018.
  • 9. Jacobs, S. B., 2016. The Energy Prosumer, Ecol. LAW Q., 519, 62, DOI: 10.15779/Z38XS02.
  • 10. Karaiev, O., Bondarenko, L., Halko, S., Miroshnyk, O., Vershkov, O., Karaieva, T., Shchur, T., Findura, P., Prístavka, M., 2021. Mathematical modelling of the fruit-stone culture seeds calibration process using flat sieves, Acta Technologica Agriculturae, 24(3), 119-123, DOI: 10.2478/ata-2021-0020.
  • 11. Keles, R., Renewal Energy Sources, 2012, ResearchGate, p. 35:23-32, DOI: 10.1016/j.sbspro.2012.02.059.
  • 12. Khasawneh, A., Qawaqzeh, M., Kuchanskyy, V., Rubanenko, O., Miroshnyk, O., Shchur, T., Drechny, M., 2021. Optimal Determination Method of the Transposition Steps of An Extra-High Voltage Power Transmission Line, Energies, 14, 6791 DOI: 10.3390/en14206791.
  • 13. Kuźniak, R., Pawelec, A., Bartosik, A., Pawełczyk, M., 2022. Determination of the Electricity Storage Power and Capacity for Cooperation with the Microgrid Implementing the Peak Shaving Strategy in Selected Industrial Enterprises, Energies, 15(13), DOI: 10.3390/en15134793.
  • 14. Mahmood, A., Butt, A. R., Mussadiq, U., Nawaz, R., Zafar R., Razzaq, S., 2017. Energy sharing and management for prosumers in smart grid with integration of storage system, 5th International Istanbul Smart Grid and Cities Congress and Fair (ICSG), 153-156.
  • 15. Medveď, D., Kolcun M., Pavlik, M., Bena, L., Mester, M., 2021. Analysis of Prosumer Behavior in the Electrical Network, Energies, 14, DOI: 10.3390/10.3390/en14248212.
  • 16. Merrad, Y., Habaebi, M. H., Toha, S. F., Islam, M. R., Gunawan, T. S., Mesri, M., 2022. Fully Decentralized, Cost-Effective Energy Demand Response Management System with a Smart Contracts-Based Optimal Power Flow Solution for Smart Grids, Energies, 15(12), DOI: 10.3390/en15124461.
  • 17. Miroshnuk, O.O., Tymchuk, S.O., 2013. Uniform distribution of loads in the electric system 0.38/0.22 kV using genetic algorithms, Technical Electrodynamics, 4, 67-73. http://www.scopus.com/inward/record.url?eid=2-s2.0-84885913005&partnerID= MN8TOARS
  • 18. Miroshnyk, O., Moroz, O., Shchur, T., Chepizhnyi, A., Qawaqzeh, M., Kocira, S., 2023. Investigation of Smart Grid Operation Modes with Electrical Energy Storage System. Energies, 16, 2638, DOI: 10.3390/en16062638.
  • 19. Mishra, K., Basu, S., Maulik, U., 2022. Load profile mining using directed weighted graphs with application towards demand response management, Applied Energy, 311, 118578, DOI: 10.1016/j.apenergy.118578.
  • 20. Mohammadi-Ivatloo, B., Jabari F., 2018. Operation, Planning, and Analysis of Energy Storage Systems in Smart Energy Hubs. Cham: Springer International Publishing, DOI: 10.1007/978-3-319-75097-2.
  • 21. Padmanaban S., Holm-Nielsen J. B., Padmanandam K., Dhanaraj, R., Balusamy, B., 2022. Smart Energy and Electric Power Systems - 1st Edition, Accessed: Jul. 03, 2022. https://www.elsevier.com/books/smart-energy-and-electric-power-systems/ padmanaban/978-0-323-91664-6.
  • 22. Parag, Y., Sovacool, B. K., 2016. Electricity market design for the prosumer era, Nat. Energy, 1(4), 16032, DOI: 10.1038/nenergy.2016.32.
  • 23. Pressmair, G., Amann, C., Leutgöb, K., 2021. Business Models for Demand Response: Exploring the Economic Limits for Small- and Medium-Sized Prosumers, Energies, 14(21), DOI: 10.3390/en14217085.
  • 24. Qawaqzeh, M.Z., Miroshnyk, O., Shchur, T., Kasner, R., Idzikowski, A., Kruszelnicka, W., Tomporowski, A., Bałdowska-Witos, P., Flizikowski, J., Zawada, M., Doerffer, K., 2021. Research of Emergency Modes of Wind Power Plants Using Computer Simulation, Energies, 14, 4780, DOI: 10.3390/en14164780.
  • 25. Sioshansi, F., 2019. Consumer, prosumer, prosumager: how service innovations will disrupt the utility business model, WA: Elsevier, Waltham.
  • 26. Social and Demographic Characteristics of Households of Ukraine. State Statistics Service of Ukraine, 2020. Accessed: May 21, 2022. [Online]. Available: www.ukrstat.gov.ua.
  • 27. Tutak, M.; Brodny, J.; Siwiec, D.; Ulewicz, R.; Bindzár, P.; 2020. Studying the Level of Sustainable Energy Development of the European Union Countries and Their Similarity Based on the Economic and Demographic Potential. Energies, 13, 6643. DOI: 10.3390/en13246643
  • 28. Tymchuk, S., Miroshnyk, O., 2015. Assess electricity quality by means of fuzzy generalized index, Easternt-European Journal of enterprise technologies, 3/4(75), 26 31, DOI: 10.15587/1729-4061.2015.42484.
  • 29. Ulewicz, R.; Siwiec, D.; Pacana, A.; Tutak, M.; Brodny, J.; 2021. Multi-Criteria Method for the Selection of Renewable Energy Sources in the Polish Industrial Sector. Energies, 14, 2386. DOI: 10.3390/en14092386
  • 30. Weiß, A., Biedenbach, F., Mueller, M., 2022. Probabilistic Load Profile Model for Public Charging Infrastructure to Evaluate the Grid Load, Energies, 15, 4748, DOI: 10.3390/en15134748.
  • 31. Weiß, A., Biedenbach, F., Mueller, M., 2022. Probabilistic Load Profile Model for Public Charging Infrastructure to Evaluate the Grid Load, Energies, 15, 4748, DOI: 10.3390/en15134748.
  • 32. Xia-Bauer, C., Vondung, F., Thomas, S., Moser, R., 2022. Business Model Innovations for Renewable Energy Prosumer Development in Germany, Sustainability, 14(13), DOI: 10.3390/su14137545.
  • 33. Zdonek, I., Tokarski, S., Mularczyk, A., Turek, M., 2022. Evaluation of the Program Subsidizing Prosumer Photovoltaic Sources in Poland, Energies, 15(3), DOI: 10.3390/en15030846.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43f1965c-ed59-40b5-a34f-5db24874c67e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.