PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

3D pore pressure modeling and overpressure zone prediction in the upper Assam Shelf, India

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Quantitative variation of pore pressure within the formations is essential for the selection of drilling mud, and to avoid catastrophic incidents such as blowouts. In this paper, we estimate to detect in-situ overpressure zone (OPZ) and to establish the adequate spatial distribution of PP from a 3D seismic data containing three wells in the foreland basin of the upper Assam shelf. We applied the fact that the porosity of Shale decreases monotonically as the effective stress increases, so we delimited the Shale volume up to 70% for PP estimation. The OPZ has been identified in the wells by comparing two methods: first, deviation of sonic transit time from normal compaction trend, and second, the separation between sonic-density porosity. The predicted PP is validated by repeat formation test and mud weight data. The 3D pore pressure model that obtained by velocity-effective stress transformation method matches with pore pressure in the wells with excellent goodness of ft. The PP gradient varies from 14.22 to 15.50 MPa/km in OPZ, and the top of OPZ ranges from 1225 to 2182 m, respectively. The spatial distribution of pore pressure is found to be mostly normal pressure for Barail, Sylhet and fracture basement except in the Kopili formation in which OPZ is spatially distributed, and higher pressure is observed in the locations toward the S-SE direction. Our results reveal the occurrence of overpressure zone in Barail and Kopili formations of Oligocene to Eocene, which can be attributed to the disequilibrium compaction phenomenon.
Czasopismo
Rocznik
Strony
1203--1221
Opis fizyczny
Bibliogr. 62 poz.
Twórcy
autor
  • Department of Geophysics, Banaras Hindu University, Varanasi 221005, India
  • Department of Geophysics, Banaras Hindu University, Varanasi 221005, India
  • Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India
  • Department of Applied Geophysics, IIT(ISM), Dhanbad, India
Bibliografia
  • 1. Alabi A, Enikanselu AP (2019) Integrating seismic acoustic impedance inversion and attributes for reservoir analysis over ‘DJ’ field, Niger Delta. J Pet Explor Product Technol 9:2487–2496
  • 2. Alam J, Chatterjee R, Dasgupta S (2019) Estimation of pore pressure, tectonic strain and stress magnitudes in the upper Assam basin: a tectonically active part of India. Geophys J Int 216:659–675
  • 3. Atat JG, Akankpo AO, Umoren EB, Horsfall OI, Ekpo SS (2020) The effect of density-velocity relation parameters on density curve in TAU field, Niger delta basin. Malays J Geosci 4:54–58
  • 4. Bastia R, Naik GC, Mahapatra P (1993) Hydrocarbon prospects of Schuppen Belt, Assam, Arakan Basinn in Biswas SK et al (eds) Proceedings of the second seminar on petroliferous basins of India, Oil natural gas corporation, Dehradun 18–20 December 1991, 1 (East Coast, Andaman and Assam-Arakan basin), pp 493–506
  • 5. Bell JS (1990) The stress regime of the scotian shelf offshore eastern Canada to 6 kilometers depth and implications for rock mechanics and hydrocarbon migration. In: Maury V, Foutmaintraux D (eds) Rock at great depths, vol 3. A.A. Balkema, Rotterdam, pp 1243–1265
  • 6. Berteussen K, Ursin B (1983) Approximate computation of the acoustic impedance from seismic data. Geophysics 48:1305–1414. https://doi.org/10.1190/1.1441415
  • 7. Bhagwan S, Singh OD, Rai A, Talukdar BN (1998) Occurrence of overpressure and its implications for hydrocarbon exploration. In: Society of petroleum engineers India oil and gas conference and exhibition. https://doi.org/10.2118/39596-MS
  • 8. Bhandari LL, Fuloria RC, Sastri VV (1973) Stratigraphy of Assam valley. Am Assoc Pet Geol Bull 57:643–654. https://doi.org/10.1306/819A4310-16C5-11D7-8645000102C1865D
  • 9. Bowers GL (1995) Pore pressure estimation from velocity data: accounting for pore pressure mechanisms besides undercompaction. Soc Pet Eng Drill Complet 10:89–95. https://doi.org/10.2118/27488-PA
  • 10. Bruce B, Bowers G (2002) Pore pressure terminology. Lead Edge 21:170–173. https://doi.org/10.1190/1.1452607
  • 11. Chatterjee R, Mukhopadhyay M (2003) Stress modeling for the oil and gas fields of Krishna-Godavari and Cauvery basins, India, using finite element technique. Petrophysics 44:244–252
  • 12. Chatterjee R, Mukhopdhyay M (2002) In-situ stress determination using well log data for the oil fields of the Krishna-Godavari basin. Petrophysics 43:26–27
  • 13. Chatterjee R, Mukhopadhyay M, Paul S (2011) Overpressure zone under the Krishna-Godavari offshore basin: geophysical implications for natural hazard in deeper water drilling. Nat Hazards 57:121–132. https://doi.org/10.1007/s11069-010-9659-6
  • 14. Chatterjee R, Paul S, Singha DK, Mukhopadhyay M (2015) Overpressure zones in relation to in situ stress for the Krishna-Godavari Basin, Eastern continental margin of India: implications for hydrocarbon prospectivity. In: Mukherjee S (ed) Petroleum geosciences: Indian contexts. Springer, Berlin, pp 127–142
  • 15. Chatterjee R, Mukhopadhyay M (2001) Stress-induced borehole elongation up to 3.6 km depth in the Cauvery basin, India. In: Society of petrophysicists and well log analysts 42nd Annual logging symposium, Houston, TX, June 17–20, pp 1–13
  • 16. Chopra S, Huffman AL (2006) Velocity determination for pore pressure prediction. Lead Edge 25:1502–1515
  • 17. Cui T, Margrave FG (2014) Seismic Wavelet Estimation. CREWES Res Rep 26:1–16
  • 18. Dahlberg EC (1982) Applied hydrodynamics in petroleum exploration. Springer, Verlag, pp 1–171
  • 19. Dasgupta S, Chatterjee R, Mohanty SP, Alam J (2019) Pore pressure modeling in a compressional setting: a case study from Assam, NE India. J Pet Geol 42:319–338. https://doi.org/10.1111/jpg.12736
  • 20. Dutta NC (2002) Geopressure prediction using seismic data: current status and the road ahead. Geophysics 67:2012–2041. https://doi.org/10.1190/1.1527101
  • 21. Eaton BA (1976) Graphical method predicts geopressures worldwide. World Oil 182:51–56
  • 22. Eaton BA (1975) The equation for geopressure prediction from well logs. In: Fall meeting of the society of petroleum engineers of AIME, Dallas, TX. https://doi.org/10.2118/5544-MS
  • 23. Eberhart-Phillips D, Han DH, Zoback MD (1989) Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone. Geophysics 54:82–89. https://doi.org/10.1190/1.1442580
  • 24. Edgar AJ, Baan VM (2011) How reliable is statistical wavelet estimation. Geophysics 76:59–68. https://doi.org/10.1190/1.3587220
  • 25. Faraklioti M, Petrou M (2004) Horizon picking in 3D seismic data volume. Mach vis Appl 15:216–219. https://doi.org/10.1007/s00138-004-0151-8
  • 26. Gowd TN, Srirama Rao SV, Chary KB (1998) Seismo tectonics of northeastern India. Curr Sci 74:75–80
  • 27. Hampson D, Russell B (2013) Joint simultaneous inversion of PP and PS angle gathers. CSEG Rec 38:32–39
  • 28. Hampson D, Russell B, Bankhead B (2005) Simultaneous inversion of pre-stack seismic data. Soc Explor Geophys Tech Program Expand Abstr. https://doi.org/10.1190/1.2148008
  • 29. Hao F, Gong Z, Li S, Yang J (2002) Mechanism of diapirism and episodic fluid injections in the Yinggehai Basin. Sci China Ser D Earth Sci 45:151–159. https://doi.org/10.1007/BF02879792
  • 30. Hart BS, Flemings PB, Deshpande A (1995) Porosity and pressure: role of compaction disequilibrium in the development of geopressures in a Gulf Coast Pleistocene basin. Geology 23:45–48. https://doi.org/10.1130/0091-7613(1995)023%3C0045:PAPROC%3E2.3.CO;2
  • 31. Hills R (2000) Pore pressure/stress coupling and its implications for seismicity. Explor Geophys 31:448–454. https://doi.org/10.1071/EG00448
  • 32. Kent WN, Dasgupta U (2004) Structural evolution in response to fold and thrust belt tectonics in northern Assam: a key to hydrocarbon exploration in the Jaipur anticline area. Mar Pet Geol 21:785–803. https://doi.org/10.1016/j.marpetgeo.2003.12.006
  • 33. Law BE, Spencer CW (1998) Abnormal pressure in hydrocarbon environments. Am Assoc Pet Geol 70:1–11
  • 34. Li W, Xie J, Gao XH, Zhang LH, Yu F (2008) Characteristics of Jurassic mudstone overpressure and its control on oil and gas accumulation in Turpan depression [in Chinese with English abstract]. Pet Explor Dev 35:28–33. https://doi.org/10.1016/S1876-3804(08)60005-1
  • 35. Lindsay R, Towner B (2001) Pore pressure influence on rock property and reflectivity modeling. Lead Edge 20:184–187. https://doi.org/10.1190/1.1438906
  • 36. Liu L, Shen G, Wang Z, Yang H, Han H, Cheng Y (2018) Abnormal formation velocities and applications to pore pressure prediction. J Appl Geophys 153:1–6. https://doi.org/10.1016/j.jappgeo.2018.02.013
  • 37. Magara K (1976) Thickness of removed sedimentary rocks, paleopore pressure and paleotemperature, southwestern part of western Canada basin. Am Assoc Pet Geol Bull 60:554–565. https://doi.org/10.1306/83D92401-16C7-11D7-8645000102C1865D
  • 38. Osborne MJ, Swarbrick RE (1997) Mechanisms for generating overpressure in sedimentary basins: a reevaluation. Am Assoc Pet Geol Bull 81:1023–1041. https://doi.org/10.1306/522B49C9-1727-11D7-8645000102C1865D
  • 39. Oughton RH, Wooff DA, Hobbs RW, O’Connor SA, Swarbrick RE (2015) Quantifying uncertainty in pore-pressure estimation using Bayesian networks, with application to use of an offset well. Pet Geostat. https://doi.org/10.3997/2214-4609.201413638
  • 40. Plumb RA, Evans KF, Engelder T (1991) Geophysical log responses and their correlation with bed-to-bed stress contrasts in Paleozoic rocks, Appalachian plateau, New York. J Geophys Res 96:14509–14528. https://doi.org/10.1029/91JB00896
  • 41. Raju SV, Mathur N (1995) Petroleum geochemistry of a part of the Upper Assam Basin, India: a brief overview. Org Geochem 23:55–70. https://doi.org/10.1016/0146-6380(94)00104-9
  • 42. Roy DK, Ray GK, Biswas AK (2010) Overview of overpressure in Bengal Basin, India. J Geol Soc India 75:644–660. https://doi.org/10.1007/s12594-010-0053-5
  • 43. Russell BH (1988) Introduction to seismic inversion methods. Soc Explor Geophys. https://doi.org/10.1190/1.9781560802303
  • 44. Russell B, Hampson D (1991) Comparison of post stack inversion methods. In: 61st Annual international meeting, society exploration geophysicists expanded abstracts 10: 876–878. https://doi.org/10.1190/1.1888870
  • 45. Sahoo M, Gogoi KD (2011) Structural and sedimentary evolutions of Upper Assam Basin, India and implications on hydrocarbon prospectivity. In: The 2nd south asian geoscience conference and exhibition, GEO India 2011, Association of petroleum geologists, India, Abstracts, 56: 1–6
  • 46. Sarker R, Batzle M (2008) Effective stress coefficient in shales and its applicability to Eaton’s equation. Lead Edge 27:798–804. https://doi.org/10.1190/1.2944165
  • 47. Sayers CM, Johnson CM, Denyer G (2000) Predrill pore pressure prediction using seismic data. IADC/SPE drilling conference, New Orleans, Louisiana. https://doi.org/10.2118/59122-MS
  • 48. Singha DK, Chatterjee R (2014) Detection of overpressure zones and a statistical model for pore pressure estimation from well logs in the Krishna-Godavari Basin, India. Geochem Geophys Geosyst 15:1009–1020. https://doi.org/10.1002/2013GC005162
  • 49. Singha DK, Chatterjee R (2015) Geomechanical modeling using finite elementmethod for prediction of in-situ stress in Krishna-Godavari basin, India. Int J Rock Mech Min Sci 73:15–27. https://doi.org/10.1016/j.ijrmms.2014.10.003
  • 50. Singha DK, Shukla KP, Chatterjee R, Sain K (2019) Multi-channel 2D seismic constraints on pore pressure and vertical stress related gas hydrate in the deep offshore of the Mahanadi Basin. India J Asian Earth Sci. https://doi.org/10.1016/j.jseaes.2019.103882
  • 51. Soleymani H, Riahi MA (2012) Velocity-based pore-pressure prediction- a case study at one of the Iranian southwest oil fields. J Petrol Sci Eng 94:40–46. https://doi.org/10.1016/j.petrol.2012.06.024
  • 52. Swarbrick RE, Osborne MJ (1998) Mechanisms that generate abnormal pressures: An overview. In: Law BE, Ulmishek GF, Slavin VI (eds) Abnormal pressures in hydrocarbon environments, vol 70. American Association Petroleum Geologists, Memoir, pp 13–34
  • 53. Swarbrick RE, Osborne MJ, Yardley GS (2001) Comparison of overpressure magnitude resulting from the main generating mechanisms. Am Assoc Pet Geol Mem 76:1–12
  • 54. Tang J, Lerche L (1993) Geopressure evolution hydrocarbon generation and migration in the Beaufort-Mackenzie Basin, Canada: results from two dimensional quantitative modeling. Mar Pet Geol 10(4):373–393. https://doi.org/10.1016/0264-8172(93)90082-4
  • 55. Terzaghi K (1943) Theoretical soil mechanics. Wiley, New Jersey. https://doi.org/10.1002/9780470172766
  • 56. Tingay MRP, Hillis RR, Swarbrick RE, Morley CK, Damit AR (2009) Origin of overpressure and pore-pressure prediction in the Baram province, Brunei. Am Assoc Pet Geol Bull 93:51–74. https://doi.org/10.1306/08080808016
  • 57. Uddin A, Lundeberg N (1998) Cenozoic history of the Himalaya-Bengal system: sand composition in the Bengal Basin, Bangladesh. Geol Soc Am Bull 110:497–511. https://doi.org/10.1130/0016-7606(1998)110%3C0497:CHOTHB%3E2.3.CO;2
  • 58. Wandrey CJ (2004) Sylhet-Kopili/Barail-Tipam composite total petroleum system, Assam geologic province, India. In: Wandrey CJ (ed) Petroleum systems and related geologic studies in region 8, South Asia, vol 2208-D. US Geological Survey Bulletin, CA, pp 1–19
  • 59. Yi YB, Lee G, Kim JH, Jou HT, Yoo GD, Ryu JB, Lee K (2013) Comparison of wavelet estimation methods. Geosci J 17:55–63
  • 60. Zhang J (2011) Pore pressure prediction from well logs: methods, modifications, and new approaches. Earth-Sci Rev 108:50–63. https://doi.org/10.1016/j.earscirev.2011.06.001
  • 61. Zoback MD, Barton CA, Brudy M, Castillo DA, Finkbeiner T, Grollimund BR, Moos DB, Peska P, Ward CD, Wiprut DJ (2003) Determination of stress orientation and magnitude in deep wells. Int J Rock Mech Min Sci 40:1049–1076. https://doi.org/10.1016/j.ijrmms.2003.07.001
  • 62. Zutshi PL, Panwar MS (1997) Assam shelf and Assam- Arakan fold belt. Geology of Petroliferous Basins of India, Oil and Natural Gas Corporation, Dehra Dun, p 139
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43f11bad-d7b0-4f9f-bdf8-baadf61ad034
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.