Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Generation of two identical ns laser pulses spaced by a single μs time interval by means of sequential switching of the output mirror transmittance in a diode-pumped Nd:YAG laser is reported, to our knowledge, for the first time. The theoretical study of the process of transmission losses switching is developed. This analysis confirms the possibility of generation of two identical Q-switched laser pulses with 100% efficiency with respect to the referenced single pulse energy. The detailed characterization of the laser in free-running, single and double Q-switching regimes is presented. The laser can be applied in different branches of metrology as PIV, LIBS or holographic interferometry.
Czasopismo
Rocznik
Tom
Strony
513--530
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr., wzory
Twórcy
autor
- Military University of Technology, Institute of Optoelectronics, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
autor
- Military University of Technology, Institute of Optoelectronics, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
autor
- Military University of Technology, Institute of Optoelectronics, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
- [1] Li, F., Zhu, X., Wang, J., Zang, H., Huang, M., Chen, W. (2013). Single-frequency Q-switched double-pulse Nd:YAG laser. Laser Physics Letters, 10(3), 035001.
- [2] Pedrini, G., Tiziani, H.J. (1995). Digital double-pulse holographic interferometry using Fresnel and image plane holograms. Measurement, 15(4), 251-260.
- [3] Hernandez-Montesa, M., Santoyoa, F. M., Lopeza, C.P., Solisa, S.M., Esquivel, J. (2011). Digital holographic interferometry applied to the study of tympanic membrane displacements. Optics and Lasers in Engineering, 49(5), 698-702.
- [4] Pedrini, G., Tiziani, H.J., Zou, Y. (1997). Digital Double Pulse-TV-Holography. Optics and Lasers in Engineering, 26(2-3), 199-219.
- [5] Katz, J., Donaghay, P.L., Zhang, J., King, S., Russell, K. (1999). Submersible holocamera for detection of particle characteristics and motions in the ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 46(8), 1455-1481.
- [6] Hain, R., Kahler, C.J. (2007). Fundamentals of multiframe particle image velocimetry (PIV). Experiments in fluids, 42(4), 575-587.
- [7] Westerweel, J. (1997). Fundamentals of digital particle image velocimetry. Measurement Science and Technology, 8(11), 1379-1392.
- [8] Prasad, A.K. (2000). Particle image velocimetry. Current Science, 79(1), 51-60.
- [9] Mickiewicz, W. (2014). Systematic error of acoustic particle image velocimetry and its correction. Metrology and Measurement Systems, 21(3), 447-460.
- [10] Witkowski, D., Kubicki, W., Dziuban, J.A., Jašíková, D., Karczemska, A. (2018). Micro-particle image velocimetry for imaging flows in passive microfluidic mixers. Metrology and Measurement Systems, 25(3), 441-450.
- [11] Babushok, V.I., DeLucia, F.C., Gottfried, J.L., Munson, C.A., Miziolek, A.W. (2006). Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement. Spectrochimica Acta Part B: Atomic Spectroscopy, 61(9), 999-1014.
- [12] Li, S., Liu, L., Yan, A., Huang, S., Huang, X., Chen, R., Lu, Y., Chen, K. (2017). A compactfield-portable double-pulse laser system to enhance laser induced breakdown spectroscopy.Review of Scientific Instruments, 88(2), 023109.
- [13] Li, S., Liu, L., Chen, R., Nelsen, B., Huang, X., Lu, Y., Chen, K. (2016). Development of a compact vertical cavity surface-emitting laser end-pumped actively Q-switched laser for laser-induced breakdown spectroscopy. Review of Scientific Instruments, 87(3), 033114.
- [14] Bielecki, Z., Janucki, J., Kawalec, A., Mikołajczyk, J., Pałka, N., Pasternak, M., Wojtas, J. (2012). Sensors and systems for the detection of explosive devices - an overview. Metrology and Measurement Systems, 19(1), 3-28.
- [15] Jankiewicz, Z., Trzęsowski, Z. (1980). Laser generation using partial switching of resonator losses. Bulletin of the Polish Academy of Sciences: Technical Sciences, 28(5-6), 47-61, 229-243.
- [16] Jankiewicz, Z. (1982). Generation of a train of laser pulses by partially switching off resonator losses. Soviet Journal of Quantum Electronics, 12(7), 847-852.
- [17] Korobeynikova, A.P., Shaikin, I.A., Shaykin, A.A., Koryukin, I.V., Khazanov, E.A. (2018). Generation of double giant pulses in actively Q-switched lasers. Quantum Electronics, 48(4), 351-357.
- [18] Veiko, V.P., Lednev, V.N., Pershin, S.M., Samokhvalov, A.A., Yakovlev, E.B., Zhitenev, I.Yu., Kliushin, A.N. (2016). Double nanosecond pulses generation in ytterbium fiber laser. Review of Scientific Instruments, 87(6), 063114.
- [19] Degnan, J.J., (1989). Theory of the Optimally Coupled Q-Switched Laser. IEEE Journal of Quantum Electronics, 25(2), 214-220.
- [20] Kaskow, M., Gorajek, L., Zendzian, W., Jabczynski, J. (2018). MW peak power KTP-OPO-based “eye-safe” transmitter. Opto-Electronics Review, 26(2), 188-193.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43ee403a-08fa-4dd6-9d48-b4d7e7250aa3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.