PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Perceptive comparison of mean and full field dynamic recrystallization models

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Review of dynamic recrystallization models is the subject of the present work. Development of both mean field and full field approaches during last three decades is presented and discussed. Conventional mean field models based on closed form equations as well as differential equations are presented first. Then full field models are elaborated focusing on the cellular automata approach as an example. Capabilities as well as limitations and drawbacks of these approaches are highlighted based on the set of case studies. Experimental data for validation of models were obtained from uniaxial compression tests at Gleeble 3800 thermo-mechanical simulator.
Rocznik
Strony
569--589
Opis fizyczny
Bibliogr. 80 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] H.J. McQueen, Controversies in the theory of dynamic recrystallization, Materials Science Forum 113–115 (1993) 429–434.
  • [2] J.J. Jonas, Dynamic recrystallization in strip mills – industrial fact or metallurgical fiction? in: B. Hutchinson, M. Andersson, G. Engberg, B. Karlsson, T. Siwecki (Eds.), Thermo-mechanical Processing in Theory, Modelling & Practice, The Swedish Society for Materials Technology, Stockholm, 1996 24–34.
  • [3] F. Montheillet, J.J. Jonas, Recrystallization, dynamic, Encyclopedia of Applied Physics 16 (1996) 205–225.
  • [4] T. Sakai, J.J. Jonas, Overview no. 35, dynamic recrystallization: mechanical and microstructural considerations, Acta Metallurgica 32 (1984) 189–209.
  • [5] C.M. Sellars, Modelling microstructural development during hot rolling, Materials Science and Technology 6 (1990) 1072– 1081.
  • [6] T. Sakai, Dynamic recrystallization microstructures under hot working conditions, Journal of Materials Processing Technology 53 (1995) 349–361.
  • [7] T. Sakai, Y. Nagao, M. Ohashi, J.J. Jonas, Flow stress and substructural change during transient dynamic recrystallization of nickel, Materials Science and Technology 2 (1986) 659–665.
  • [8] P.D. Hodgson, Models of recrystallization behaviour of C-Mn and Nb microalloyed steels, Materials Forum 17 (1993) 403–410.
  • [9] S.H. Zahiri, P.D. Hodgson, The static, dynamic and metadynamic recrystallisation of a medium carbon steel, Materials Science and Technology 20 (2004) 458–464.
  • [10] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, second ed., Elsevier, Oxford, 2004.
  • [11] N. Fujita, R. Sahara, T. Narushima, C. Ouchi, Austenitic grain growth behavior immediately after dynamic recrystallization in HSLA steels and austenitic stainless steel, ISIJ International 48 (2008) 1419–1428.
  • [12] A. Dehghan-Manshadi, P.D. Hodgson, Dynamic recrystallization of austenitic stainless steel under multiple peak flow behaviours, ISIJ International 47 (2007) 1799–1803.
  • [13] C.W. Cahn, in: R.W. Cahn, P Haasen (Eds.), Recovery and Recrystallization – Physical Metallurgy, Elsevier Science BV, 1996.
  • [14] L. Sun, K. Muszka, B.P. Wynne, E.J. Palmiere, On the interactions between strain path reversal and dynamic recrystallisation in 316L stainless steel studied by hot torsion, Materials Science and Engineering A 568 (2013) 160–170.
  • [15] M.J. Luton, C.M. Sellars, Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation, Acta Metallurgica 17 (1969) 1033–1043.
  • [16] T. Sakai, M.G. Akben, J.J. Jonas, Dynamic recrystallization during the transient deformation of a vanadium microalloyed steel, Acta Metallurgica 31 (1983) 631–641.
  • [17] E.I. Poliak, J.J. Jonas, Initiation of dynamic recrystallization in constant strain rate hot deformation, ISIJ International 43 (2003) 684–691.
  • [18] H. Mecking, G. Gottstein, Recrystallization of Metallic Materials, Dr. Riederer Verlag, Stuttgart, 1977, pp. 195–222.
  • [19] A. Nadai, M.J. Manjoine, High speed tension tests at elevated temperatures, parts II and III, Transactions of the ASME 63 (1941) 77–91.
  • [20] E.I. Poliak, J.J. Jonas, A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization, Acta Materialia 44 (1996) 127–136.
  • [21] R. Sandstrom, R. Lagneborg, A model for hot working occurring by recrystallization, Acta Metallurgica 23 (1975) 387–398.
  • [22] W. Roberts, B. Ahlblom, A nucleation criterion for dynamic recrystallization during hot working, Acta Metallurgica 26 (1978) 801–813.
  • [23] F. Chen, G.W. Feng, Z.S. Cui, Mathematical modeling of critical condition for dynamic recrystallization, Procedia Engineering 81 (2014) 486–491.
  • [24] H. Mirzadeh, A. Najafizadeh, Prediction of the critical conditions for initiation of dynamic recrystallization, Materials and Design 31 (2010) 1174–1179.
  • [25] A. Laasraoui, J.J. Jonas, Prediction of temperature distribution, flow stress and microstructure during the multipass hot rolling of steel plate and strip, ISIJ International 31 (1991) 95–105.
  • [26] H. Yada, Prediction of microstructural changes and mechanical properties in hot strip rolling, in: G.E. Ruddle, A. F. Crawley (Eds.), Proc. Symp. Accelerated Cooling of Rolled Steel, Pergamon Press, Winnipeg, 1987 105–119.
  • [27] R. Kuziak, Y.W. Cheng, M. Głowacki, M. Pietrzyk, Modelling of the Microstructure and Mechanical Properties of Steels During Thermomechanical Processing, NIST Technical Note 1393, Boulder, 1997.
  • [28] J.H. Bianchi, L.P. Karjalainen, Modelling of dynamic and metadynamic recrystallization during bar rolling of medium carbon spring steel, Journal of Materials Processing Technology 160 (2005) 267–277.
  • [29] J.G. Lenard, M. Pietrzyk, L. Cser, Mathematical and Physical Simulation of the Properties of Hot Rolled Products, Elsevier, Amsterdam, 1999.
  • [30] I. Milenin, M. Pernach, M. Pietrzyk, Application of the control theory for modelling austenite-ferrite phase transformation in steels, Computer Methods in Materials Science 15 (2015) 327–335.
  • [31] V.G. Garcia, J.M. Cabrera, J.M. Prado, Predicting multiple peak dynamic recrystallization of copper, Materials Science Forum 467–470 (2004) 1181–1186.
  • [32] A. Hensel, T. Spittel, Kraft- und Arbeitsbedarf Bildsamer Formgebungsverfahren, VEB Deutscher Verlagfür Grundstoffindustrie, Leipzig, 1978.
  • [33] M. Spittel, T. Spittel, H. Warlimont, H. Landolt, R. Börnstein, W. Martienssen, Numerical data and functional relationships in science and technology: new series, in: Advanced Materials and Technologies. Materials Metal Forming Data Nonferrous Alloys – Heavy Metals, Springer, Berlin, 2016.
  • [34] M. Spittel, T. Spittel, H. Warlimont, H. Landolt, R. Börnstein, W. Martienssen, Numerical data and functional relationships in science and technology: new series, in: Advanced Materials and Technologies. Materials Metal Forming Data Ferrous Alloys, Springer, Berlin, 2009.
  • [35] S.B. Davenport, N.J. Silk, C.N. Sparks, C.M. Sellars, Development of constitutive equations for the modelling of hot rolling, Materials Science and Technology 16 (1999) 1–8.
  • [36] B. Kowalski, C.M. Sellars, M. Pietrzyk, Development of a computer code for the interpretation of results of hot plane strain compression tests, ISIJ International 40 (2000) 1230– 1236.
  • [37] H. Mecking, U.F. Kocks, Kinetics of flow and strain-hardening, Acta Metallurgica 29 (1981) 1865–1875.
  • [38] Y. Estrin, H. Mecking, A unified phenomenological description of work hardening and creep based on one- parameter models, Acta Metallurgica 32 (1984) 57–70.
  • [39] J. Ordon, R. Kuziak, M. Pietrzyk, History dependent constitutive law for austenitic steels, in: M. Pietrzyk, J. Kusiak, J. Majta, P. Hartley, I. Pillinger (Eds.), Proc. Metal Forming 2000, Publ. A. Balkema, Krakow, 2000 747–753.
  • [40] C. Roucoules, M. Pietrzyk, P.D. Hodgson, Analysis of work hardening and recrystallization during the hot working of steel using a statistically based internal variable method, Materials Science and Engineering A 339 (2003) 1–9.
  • [41] H. Stüwe, Dynamische erholung bei der warmverformung, Acta Metallurgica 13 (1965) 1337–1342.
  • [42] M. Seefeldt, P. Klimanek, Modelling of microstructure development by means of a dislocation-disclination reaction kinetics, Computational Materials Science 9 (1997) 267–273.
  • [43] G.G. Engberg, L. Lissel, A physically based microstructure model for predicting the microstructural evolution of a C-Mn steel during and after hot deformation, Steel Research International 79 (2008) 47–58.
  • [44] W. Pantleon, Modellierung der Substrukturentwicklung bei Warmumformung, TU Bergakad, Freiberg, 1996.
  • [45] J. Ordon, M. Pietrzyk, Z. Kędzierski, R. Kuziak, Constitutive model based on two internal variables for constant and changing deformation conditions, in: E.J. Palmiere, M. Mahfouf, C. Pinna (Eds.), Proc. Conf. Thermomechanical Processing: Mechanics, Microstructure & Control, Sheffield, (2002) 33–39.
  • [46] F. Roters, D. Raabe, G. Gottstein, Work hardening in heterogeneous alloys – a microstructural approach based on three internal state variables, Acta Materialia 48 (2000) 4181–4189.
  • [47] D. Szeliga, J. Gawąd, M. Pietrzyk, Inverse analysis for identification of rheological and friction models in metal forming, Computer Methods in Applied Mechanics and Engineering 195 (2006) 6778–6798.
  • [48] Y. Jin, N. Bozzolo, A.D. Rollett, M. Bernacki, 2D Finite element modeling of anisotropic grain growth in polycrystalline materials: level set versus multi-phase-field method, Computational Materials Science 104 (2015) 108–123.
  • [49] K. Chang, N. Moelans, Effect of grain boundary energy anisotropy on highly textured grain structures studied by phase-field simulations, Acta Materialia 64 (2014) 443–454.
  • [50] T. Hirouchi, T. Tsuru, Y. Shibutani, Grain growth prediction with inclination dependence of h110i tilt grain boundary using multi-phase-field model with penalty for multiple junctions, Computational Materials Science 53 (2012) 474–482.
  • [51] M. Bernacki, Y. Chastel, T. Coupez, R.E. Logé, Level set framework for the numerical modelling of primary recrystallization in polycrystalline materials', Scripta Materialia 58 (2008) 1129–1132.
  • [52] M. Bernacki, H. Resk, T. Coupez, R.E. Logé, Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework, Modelling and Simulation in Materials Science and Engineering 17 (2009) 064006.
  • [53] A.D. Rollett, D. Raabe, A hybrid model for mesoscopic simulation of recrystallization, Computational Materials Science 21 (2001) 69–78.
  • [54] S. Hore, S.K. Das, S. Banerjee, S. Mukherjee, A multiscale coupled Monte Carlo model to characterize microstructure evolution during hot rolling of Mo-TRIP steel, Acta Materialia 61 (2013) 7251–7259.
  • [55] R. Goetz, V. Seetharaman, Modeling dynamic recrystallization using cellular automata, Scripta Materialia 38 (1998) 405–413.
  • [56] P. Peczak, A Monte Carlo study of influence of deformation temperature on dynamic recrystallization, Acta Metallurgica and Materialia 43 (1995) 1279–1291.
  • [57] D. Ponge, G. Gottstein, Necklace formation during dynamic recrystallization mechanisms and impact on flow behavior, Acta Materialia 46 (1998) 69–80.
  • [58] J. Kroc, Simulation of Dynamic Recrystallization by Cellular Automata, (PhD thesis), Mathematical and Physical Faculty of Charles University, Prague, Czech Republic, 2011.
  • [59] J. Kroc, Application of cellular automata simulations to modelling of dynamic recrystallization, Lecture Notes in Computer Science, vol. 2329, 2002, pp. 773–782.
  • [60] J. Kroc, V. Paidar, Modelling of recrystallization and grain boundary migration by cellular automata, Materials Science Forum 426–432 (2003) 3873–3878.
  • [61] R. Ding, Z. Guo, Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization, Acta Materialia 49 (2001) 3163–3175.
  • [62] R. Ding, Z. Guo, Microstructural modelling of dynamic recrystallisation using anextended cellular automaton approach, Computational Materials Science 23 (2002) 209–218.
  • [63] M. Qian, Z. Guo, Cellular automata simulation of microstructural evolution during dynamic recrystallization of an hy-100 steel, Materials Science and Engineering A 365 (2004) 180–185.
  • [64] G. Kugler, R. Turk, Modeling the dynamic recrystallization under multi-stage hot deformation, Acta Materialia 52 (2004) 4659–4668.
  • [65] L. Madej, P.D. Hodgson, J. Gawad, M. Pietrzyk, Modeling of rheological behavior and microstructure evolution using cellular automaton technique, in: S. Støren (Ed.), Conf. Proc. ESAFORM 2004, Trondheim, (2004) 143–146.
  • [66] J. Gawad, P. Macioł, M. Pietrzyk, Multiscale modeling of microstructure and macroscopic properties in thixoforming process using cellular automaton technique, Archives of Metallurgy and Materials 50 (2005) 549–562.
  • [67] J. Gawad, L. Madej, D. Szeliga, M. Pietrzyk, Microstructure evolution modeling based on the rheological parameters using the cellular automaton technique, in: Conf. Proc. Forming, 2004, 67–70.
  • [68] D. Svyetlichnyy, A. Milenin, Modelowanie procesów rekrystalizacji za pomocą automatów komórkowych, in: A. Piela, J. Lisok, F. Grosman (Eds.), Conf. Proc. Informatyka w Technologii Metali, Ustron, (2005) 115–122.
  • [69] X. Namin, Z. Chengwu, L. Dianzhong, L. Yiyi, A simulation of dynamic recrystallization by coupling a cellular automaton method with a topology deformation technique, Computational Materials Science 41 (2008) 366–374.
  • [70] N. Yazdipour, C.H.J. Davies, P.D. Hodgson, Microstructural modeling of dynamic recrystallization using irregular cellular automata, Computational Materials Science 44 (2008) 566– 576.
  • [71] H. Hallberg, M. Wallin, M. Ristinmaa, Simulation of discontinuous dynamic recrystallization in pure Cu using a probabilistic cellular automaton, Computational Materials Science 49 (2010) 25–34.
  • [72] C. Fei, C. Zhenshan, L. Juan, C. Wen, C. Shijia, Mesoscale simulation of the high-temperature austenitizing and dynamic recrystallization by coupling a cellular automaton with a topology deformation technique, Materials Science and Engineering A 527 (2010) 5539–5549.
  • [73] C. Fei, Q. Ke, C. Zhenshan, L. Xinmin, Modeling the dynamic recrystallization in austenitic stainless steel using cellular automaton method, Computational Materials Science 83 (2014) 331–340.
  • [74] M. Sitko, L. Madej, Development of dynamic recrystallization model based on cellular automata approach, Key Engineering Materials 622–623 (2014) 617–624.
  • [75] M. Sitko, L. Madej, M. Pietrzyk, Validation of cellular automata model of dynamic recrystallization, Key Engineering Materials 651–653 (2015) 581–586.
  • [76] G. Kugler, R. Turk, Study of the influence of initial microstructure topology on the kinetics of static recrystallization using a cellular automata model, Computational Materials Science 37 (2006) 284–291.
  • [77] M. Seyed Salehi, S. Serajzadeh, Simulation of static recrystallization in non-isothermal annealing using a coupled cellular automata and finite element model, Computational Materials Science 53 (2012) 145–152.
  • [78] L. Madej, L. Rauch, K. Perzyński, P. Cybułka, Digital material representation as an efficient tool for strain inhomogeneities analysis at the micro scale level, Archives of Civil and Mechanical Engineering 11 (2011) 661–679.
  • [79] L. Madej, L. Sieradzki, M. Sitko, K. Perzynski, K. Radwanski, R. Kuziak, Multi scale cellular automata and finite element based model for cold deformation and annealing of a ferritic-pearlitic microstructure, Computational Materials Science 77 (2013) 172–181.
  • [80] L. Madej, M. Sitko, Parallelization of the Monte Carlo static recrystallization model, Lecture Notes in Computer Science, vol. 8500, 2014, pp. 445–458.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43ebf0ea-c76d-4f95-aac4-9aa8c61226f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.