PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative smelting of thermally pretreated electronic waste

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Used electronic inverters were processed thermally to eliminate organic matrix components through oxidative incineration (IN), oxidative steam gasification (SG), and pyrolysis (PY). Such prepared material was melted at 1250°C with sodium/calcium silicate waste glass under reductive and oxidative atmospheres. The highest Cu recovery in the form of a gravitationally separated metallic phase was found for oxidative smelting of the PY sample and reductive smelting of the IN sample. Recovery of precious metals was analyzed, taking Cu recovery as the reference. It was found that the recovery of Pd was better than copper recovery in each experiment, and the recovery of Au was only in the oxidative smelting of the SG sample and reductive smelting of the IN sample. Recovery of Ag and Cu was similar but only for the reductive smelting of the PY and SG samples. It was demonstrated that Cu, as well as Au, Ag, and Pd recovery, substantially depends on the transport of metals through the metal/slag interface.
Rocznik
Strony
55--70
Opis fizyczny
Bibliogr. 38 poz., rys. kolor., wykr.
Twórcy
  • Wrocław University of Science and Technology, Faculty of Environmental Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
  • Wrocław University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Environmental Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
  • Wrocław University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • ARSHADI, M.; YAGHMAEI, S.; MOUSAVI, S. M., 2018. Study of plastics elimination in bioleaching of electronic waste using Acidithiobacillus ferrooxidans. Int. J. Environ. Sci. Technol. 16, 7113–7126. https://doi.org/10.1007/s13762-018-2120-1
  • BALDÉ, C. P.; FORTI, V.; GRAY, V.; KUEHR, R, STEGMANN, P, 2017. The Global E-waste Monitor 2017: Quantities, Flows, and Resources. International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Vienna, ISBN 978-92-808-9054-9
  • BAZARGAN, A.; BWEGENDAHO, D.; BARFORD, J.; MCKAY, G., 2014. Printed circuit board waste as a source for high purity porous silica. Sep. Purif. Technol. 136, 88-93.
  • BELLEMANS, I.; DEWILDE, E.; MOELANS, N.; VERBEKEN, K., 2018. Metal losses in pyrometallurgical operations -A review. Adv. Colloid Interface Sci. 255, 47-63.
  • CAYUMIL, R.; KHANNA, R.; RAJARAO, R.; MUKHERJEE, P.S.; SAHAJWALLA, V., 2016. Concentration of precious metals during their recovery from electronic waste. Waste Manage. 57, 121-130.
  • CUCCHIELLA, F.; D’ADAMO, I.; KOH, S.C.L.; ROSA, P., 2015. Recycling of WEEEs: An economic assessment of prezent and future e-waste streams. Renew. Sust. Energ. Rev. 51, 263–272.
  • CUI, J.; ZHANG, L., 2008. Metallurgical recovery of metals from electronic waste: A review, J. Hazard. Mater. 158, 228–256.
  • de ANDRADE, L.M.; ROSARIO, C.G.A.; DE CARVALHO, M.A., 2019. Copper Recovery from Printed Circuit Boards from Smartphones Through Bioleaching, In: TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series, Eds; Springer: Cham, Switzerland, 837–844.
  • DÍAZ-MARTÍNEZ, M.E.; ARGUMEDO-DELIRA, R.; SÁNCHEZ-VIVEROS, G.; ALARCÓN, A.; MENDOZALÓPEZ, M.R., 2019. Microbial Bioleaching of Ag, Au and Cu from Printed Circuit Boards of Mobile Phones. Curr. Microbiol. 76, 536–544.
  • ELSHKAKI, A.; GRAEDEL, T.E.; CIACCI, L.; RECK, B.K., 2018. Resource Demand Scenarios for the Major Metals. Environ. Sci. Technol. 52, 2491–2497.
  • FEDERICO, L.M.; CHIDIAC, S.E., 2009. Waste glass as a supplementary cementitious material in concrete – Critical review of treatment methods. Cement Concrete Comp. 31(8), 606–610.
  • FORTI, V.; BALDE, C.P.; KUEHR, R., 2018. E-waste statistic: Guidelines on classification, reporting and indicators, 2nd ed.. United Nations University: Bonn, Germany, ISBN 978-92-808-9067-9
  • GURGUL, A.; SZCZEPANIAK, W.; ZABŁOCKA-MALICKA, M., 2018. Incineration and pyrolysis vs. steam gasification of electronic waste. Sci. Total Environ. 624, 1119–1124.
  • IANNICELLI-ZUBIANI, E. M.; GIANI, M. I.; RECANATI, F.; DOTELLI, G.; PURICELLI, S.; Cristiani, C., 2017. Environmental impacts of a hydrometallurgical process for electronic waste treatment: A life cycle assessment case study. J. Clean. Prod. 140 (3), 1204–1216.
  • IŞILDAR, A.; RENE, E. R.; VAN HULLEBUSCHA, E. D.; LENS, P.N.L., 2018. Electronic waste as a secondary source of critical metals: Management and recovery technologies. Resour. Conserv. Recy. 135, 296–312.
  • KAYA, M., 2016. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Manage. 57, 64–90.
  • KAYA M., 2017. Recovery of Metals and Nonmetals from Waste Printed Circuit Boards (PCBs) by Physical Recycling Techniques. In: Energy Technology 2017. The Minerals, Metals & Materials Series. Zhang, L., Drelich, J. W., Neelameggham, N. R., Guillen, D. P., Haque, N., Zhu, J., Sun, Z., Wang, T., Howarter, J. A., Tesfaye, F., Ikhmayies, S., Olivetti, E., Kennedy, M. W., Eds; Springer: Cham, Switzerland, 433–451.
  • KHALIQ, A.; RHAMDHANI, M. A.; BROOKS, G.; MASOOD, S., 2014. Metal Extraction Processes for Electronic Waste and Existing Industrial Routes: A Review and Australian Perspective. Resources 3(1) 152–179.
  • KUMARI, A.; JHA, M.K.; LEE, J.; SINGH, R. P., 2016 a. Clean process for recovery of metals and recycling of acid from the leach liquor of PCBs. J. Clean. Prod. 112 (5), 4826–4834.
  • KUMARI, A.; JHA, M. K.; SINGH, R. P., 2016 b. Recovery of metals from pyrolysed PCBs by hydrometallurgical techniques. Hydrometallurgy, 165 (1), 97–105.
  • MAN, M.; NAIDU, R.; WONG, M. H., 2013. Persistent toxic substances released from uncontrolled e-waste recycling and actions for the future. Sci Total Environ. 463–464,1133-1137.
  • NAVAZO, J.M.V.; MÉNDEZ, G.V.; PEIRÓ, L.T., 2014. Material flow analysis and energy requirements of mobile phone material recovery processes. Int. J. Life Cycle Assess. 19, 567–579.
  • PANT, D.; JOSHI, D.; UPRETI, M.K.; KOTNALA, R.K., 2012. Chemical and biological extraction of metals present in E waste: A hybrid technology. Waste Manage. 32(5), 979–990.
  • PICKLES, C.A.; HARRIS, C.; PEACEY, J., 2011. Silver loss during the oxidative refining of silver–copper alloys. Miner. Eng. 2011, 24, 514-523.
  • PRIYA, A.; HAIT, S., 2017. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching. Environ. Sci. Pollut. Res. 24(8), 6989–7008. https://doi.org/10.1007/s11356-016-8313-6
  • SCHIPPER, B. W.; LIN, H. C.; MELONI, M. A.; WANSLEEBEN, K.; HEIJUNGS, R.; DER VOETA, E., 2018. Estimating global copper demand until 2100 with regression and stock dynamics. Resour. Conserv. Recycl. 132, 28–36.
  • SETHURAJAN, M.; VAN HULLEBUSCH, E. D.; FONTANA, D.; AKCIL, A.; DEVECI, H.; BATINIC, B.; LEAL, J. P; GASCHE, T.A.; KUCUKER, M. A.; KUCHTA, K.; NETO, I. F. F.; SOARES, H.; CHMIELARZ, A., 2019. Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes - a review. Crit. Rev. Environ. Sci. Technol. 49(3), 212–275.
  • SHUVA, M.A.H.; RHAMDHANI, M.A.; BROOKS, G.A.; MASOOD, S.; REUTER, M.A., 2016. Thermodynamics data of valuable elements relevant to e-waste processing through primary and secondary copper production: a review. J. Clean. Prod. 131, 795-809.
  • SZCZEPANIAK, W., ZABŁOCKA-MALICKA, M., GURGUL, A., OCHROMOWICZ, K., 2020. Acidic leaching of steam gasified, pyrolyzed and incinerated PCB waste from LCD screen, Physicochem. Probl. Miner. Process. 56, 257–268.
  • THE INTERNATIONAL CENTRE FOR DIFFRACTION DATA, PDF-2 Database, 12 Campus Blvd., Newtown Square, PA 19073–3273 U.S.A, 1998.
  • VENTURA, E.; FUTURO, A.; PINHO, S.C.; ALMEIDA, M.F.; DIAS, J.M., 2018. Physical and thermal processing of Waste Printed Circuit Boards aiming for the recovery of gold and copper. J Environ. Manage. 223, 297–305.
  • WANG, H.; ZHANG, S.; LI, B.; PAN, D.; WU, Y.; ZUO, T., 2017. Recovery of waste printed circuit boards through pyrometallurgical processing: A review. Resour. Conserv. Recycl. 126, 209–218.
  • YAMAGUCHI, K., 2018. Thermodynamic Study of the Equilibrium Distribution of Platinum Group Metals Between Slag and Molten Metals and Slag and Copper Matte. In: Extraction 2018, The Minerals, Metals & Materials Series Davis, B. R., Moats, M. S., Wang, S. Eds.; Springer: Cham, Switzerland, 797-804.
  • ZABŁOCKA-MALICKA, M.; RUTKOWSKI, P.; SZCZEPANIAK, W., 2015. Recovery of copper from PVC multiwire cable waste by steam gasification. Waste Manage. 2015, 46, 488–496.
  • ZABŁOCKA-MALICKA, M.; SZCZEPANIAK, W.; RUTKOWSKI, P.; OCHROMOWICZ, K.; LEŚNIEWICZ, A.; CHĘCMANOWSKI, J., 2018. Decomposition of the ISA-card under steam for valorized polymetallic raw material. J. Anal. Appl. Pyrolysis. 130, 256-268.
  • ZHANG, Y.; LIU, S.; XIE, H.; ZENG, X.; LI, J., 2012 a. Current status on leaching precious metals from waste printed circuit boards. Procedia. Environ. Sci. 16, 560–568.
  • ZHANG, Z.; XIAO, Y.; VONCKEN, J.; YANG, Y.; BOOM, R.; WANG, W.; ZOU, Z., 2012 b. Thermodynamic assessment of the CaO-Na2O-SiO2 slag system. In Ninth International Conference on Molten Slags, Fluxes and Salts. Proceedings of the Molten 2012, Beijing, China, May 27-30th, Extended Abstracts p. 40.
  • ZHANG, L.; XU, Z., 2016. A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. J. Clean. Prod. 127 19-36.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43e0656f-2b61-4601-bf0e-202b734decbb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.