Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A novel technique for imaging of a small animal with application of time-gated intensified CCD camera was proposed. The time-resolved method based on emission of picosecond light pulses and detection of the light penetrating in tissues was applied. In this technique, the fluorescence photons, excited in the dye circulating in the tissue, that diffusely penetrate in the optically turbid medium are detected. The data acquired during measurements carried out on a rat was analyzed in order to estimate fluorescence life time which depends strongly on the environment in which the dye is distributed. In the life time estimation a special emphasis was put on compensation of influence of the instrumental response function of the setup on the measured quantity. The proposed optical system was validated in series of phantom experiments, in which estimates of fluorescence lifetime of inclusions containing indocyanine green (ICG) were obtained. ICG is a dye revealing florescence properties in near-infrared wavelength region. Images of the estimate of fluorescence lifetime of the ICG accumulated in tissues of a rat were successfully acquired around six circular spots of illumination of the diameter of 6mm. Larger lifetime values were observed in lung/heart region of the animal. Aspect of sampling rate of the fluorescence lifetime images optimization was finally discussed.
Wydawca
Czasopismo
Rocznik
Tom
Strony
966--974
Opis fizyczny
Bibliogr. 62 poz., rys., tab., wykr.
Twórcy
autor
- Nalecz Institute of Biocybernetics and Biomedical Engineering PAS, 4 Ks. Trojdena Str., 02-109 Warsaw, Poland
autor
- Nalecz Institute of Biocybernetics and Biomedical Engineering PAS, Warsaw, Poland
autor
- Nalecz Institute of Biocybernetics and Biomedical Engineering PAS, Warsaw, Poland
autor
- Mossakowski Medical Research Centre PAS, Warsaw, Poland
autor
- Nalecz Institute of Biocybernetics and Biomedical Engineering PAS, Warsaw, Poland
autor
- Nalecz Institute of Biocybernetics and Biomedical Engineering PAS, Warsaw, Poland
autor
- Nalecz Institute of Biocybernetics and Biomedical Engineering PAS, Warsaw, Poland
Bibliografia
- [1] Levin CS. Primer on molecular imaging technology. Eur J Nucl Med Mol Imaging 2005;32(Suppl 2):S325–45.
- [2] Fujimoto JG, Drexler W, Schuman JS, Hitzenberger CK. Optical Coherence Tomography (OCT) in ophthalmology: introduction. Opt Express 2009;17(5):3978–9.
- [3] Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 1977;198(4323):1264–7.
- [4] Villringer A, Chance B. Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci 1997;20(10):435–42.
- [5] Leahy MJ, de Mul FF, Nilsson GE, Maniewski R. Principles and practice of the laser-Doppler perfusion technique. Technol Health Care 1999;7(2–3):143–62.
- [6] Wojtkiewicz S, Liebert A, Rix H, Zolek N, Maniewski R. Laser-Doppler spectrum decomposition applied for the estimation of speed distribution of particles moving in a multiple scattering medium. Phys Med Biol 2009;54(3):679–97.
- [7] Rudin M, Rausch M, Stoeckli M. Molecular imaging in drug discovery and development: potential and limitations of nonnuclear methods. Mol Imaging Biol 2005;7(1):5–13.
- [8] Weissleder R, Ross B, Rehemtulla A, Gambhir S, editors. Molecular imaging, principles and practice. USA: People's Medical Publishing House; 2010.
- [9] Lakowicz J. Principles of fluorescence spectroscopy. Springer; 2011.
- [10] Godavarty A, Sevick-Muraca EM, Eppstein MJ. Three-dimensional fluorescence lifetime tomography. Med Phys 2005;32(4):992–1000.
- [11] Kumar AT, Raymond SB, Boverman G, Boas DA, Bacskai BJ. Time resolved fluorescence tomography of turbid media based on lifetime contrast. Opt Express 2006;14(25):12255–70.
- [12] Bourayou R, Boeth H, Benav H, Betz T, Lindauer U, Nierhaus T, et al. Fluorescence tomography technique optimized for noninvasive imaging of the mouse brain. J Biomed Opt 2008;13(4):041311.
- [13] Kumar AT. Fluorescence lifetime-based optical molecular imaging. Methods Mol Biol 2011;680:165–80.
- [14] Lakowicz JR, Szmacinski H, Nowaczyk K, Berndt KW, Johnson M. Fluorescence lifetime imaging. Anal Biochem 1992;202(2):316–30.
- [15] Paul RJ, Schneckenburger H. Oxygen concentration and the oxidation-reduction state of yeast: determination of free/bound NADH and flavins by time-resolved spectroscopy. Naturwissenschaften 1996;83(1):32–5.
- [16] Knemeyer JP, Marme N, Sauer M. Probes for detection of specific DNA sequences at the single-molecule level. Anal Chem 2000;72(16):3717–24.
- [17] Gerritsen HC, Asselbergs MA, Agronskaia AV, Van Sark WG. Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution. J Microsc 2002;206(Pt 3):218–24.
- [18] Hanson KM, Behne MJ, Barry NP, Mauro TM, Gratton E, Clegg RM. Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient. Biophys J 2002;83 (3):1682–90.
- [19] Konig K, Riemann I. High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. J Biomed Opt 2003;8(3):432–9.
- [20] Treanor B, Lanigan PM, Suhling K, Schreiber T, Munro I, Neil MA, et al. Imaging fluorescence lifetime heterogeneity applied to GFP-tagged MHC protein at an immunological synapse. J Microsc 2005;217(Pt 1):36–43.
- [21] Konig K, Ehlers A, Stracke F, Riemann I. In vivo drug screening in human skin using femtosecond laser multiphoton tomography. Skin Pharmacol Physiol 2006;19 (2):78–88.
- [22] Lin Y, Barber WC, Iwanczyk JS, Roeck WW, Nalcioglu O, Gulsen G. Quantitative fluorescence tomography using a trimodality system: in vivo validation. J Biomed Opt 2010;15 (4):040503.
- [23] Kumar AT, Raymond SB, Bacskai BJ, Boas DA. Comparison of frequency-domain and time-domain fluorescence lifetime tomography. Opt Lett 2008;33(5):470–2.
- [24] Milstein AB, Stott JJ, Oh S, Boas DA, Millane RP, Bouman CA, et al. Fluorescence optical diffusion tomography using multiple-frequency data. J Opt Soc Am A Opt Image Sci Vis 2004;21(6):1035–49.
- [25] Song X, Bai J, Xiong X, Zhang Z. A fast reconstruction algorithm for fluorescence diffusion optical tomography. Conf Proc IEEE Eng Med Biol Soc 2005;2:1476–9.
- [26] Klose AD, Hielscher AH. Fluorescence tomography with simulated data based on the equation of radiative transfer. Opt Lett 2003;28(12):1019–21.
- [27] Joshi A, Rasmussen JC, Sevick-Muraca EM, Wareing TA, McGhee J. Radiative transport-based frequency-domain fluorescence tomography. Phys Med Biol 2008;53(8):2069–88.
- [28] Joshi A, Bangerth W, Hwang K, Rasmussen JC, Sevick-Muraca EM. Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection. Med Phys 2006;33(5):1299–310.
- [29] Song X, Wang D, Chen N, Bai N, Wang H. Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm. Opt Express 2007;15 (26):18300–17.
- [30] Wang D, Liu X, Bai J. Analysis of fast full angle fluorescence diffuse optical tomography with beam-forming illumination. Opt Express 2009;17(24):21376–95.
- [31] Axelsson J, Svensson J, Andersson-Engels S. Spatially varying regularization based on spectrally resolved fluorescence emission in fluorescence molecular tomography. Opt Express 2007;15(21):13574–8.
- [32] Davis SC, Dehghani H, Wang J, Jiang S, Pogue BW, Paulsen KD. Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization. Opt Express 2007;15(7):4066–82.
- [33] Freiberger M, Egger H, Scharfetter H. Nonlinear inversion schemes for fluorescence optical tomography. IEEE Trans Biomed Eng 2010;57(11).
- [34] Han D, Tian J, Liu K, Feng J, Zhang B, Ma X. Sparsity-promoting tomographic fluorescence imaging with simplified spherical harmonics approximation. IEEE Trans Biomed Eng 2010;57(10):2564–7.
- [35] Hyde D, Miller EL, Brooks DH, Ntziachristos V. Data specific spatially varying regularization for multimodal fluorescence molecular tomography. IEEE Trans Med Imaging 2010;29(2):365–74.
- [36] Kumar AT, Skoch J, Bacskai BJ, Boas DA, Dunn AK. Fluorescence-lifetime-based tomography for turbid media. Opt Lett 2005;30(24):3347–9.
- [37] Gao F, Zhao H, Zhang L, Tanikawa Y, Marjono A, Yamada Y. A self-normalized, full time-resolved method for fluorescence diffuse optical tomography. Opt Express 2008;16(17):13104–21.
- [38] Gao F, Li J, Zhang L, Poulet P, Zhao H, Yamada Y. Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-sized phantom. Appl Opt 2010;49(16):3163–72.
- [39] Kumar AT, Chung E, Raymond SB, van de Water JA, Shah K, Fukumura D, et al. Feasibility of in vivo imaging of fluorescent proteins using lifetime contrast. Opt Lett 2009;34(13):2066–8.
- [40] Sawosz P, Kacprzak M, Weigl W, Borowska-Solonynko A, Krajewski P, Zolek N, et al. Experimental estimation of the sensitivity profiles of time-resolved reflectance measurement: phantom and cadaver studies. Phys Med Biol 2012;57:7973–81.
- [41] Sawosz P, Kacprzak M, Zolek N, Weigl W, Wojtkiewicz S, Maniewski R, et al. Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies. J Biomed Opt 2010;15(6). Art. No. 066025.
- [42] Wray S, Cope M, Delpy DT, Wyatt JS, Reynolds EO. Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochim Biophys Acta 1988;933(1):184–92.
- [43] Gerega A, Zolek N, Soltysinski T, Milej D, Sawosz P, Toczylowska B, et al. Wavelength-resolved measurements of fluorescence lifetime of indocyanine green. J Biomed Opt 2011;16(6):067010.
- [44] Landsman M, Kwant G, Mook G, Zijstra W. Light absorbing properties, stability, and spectral stabilization of indocyanine green. J Appl Physiol 1976;40:575–83.
- [45] Desmettre T, Devoisselle JM, Mordon S. Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol 2000;45(1):15–27.
- [46] Sawosz P, Kacprzak M, Zolek N, Weigl W, Wojtkiewicz S, Maniewski R, et al. Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies. J Biomed Opt 2010;15(6):066025.
- [47] Pelet S, Previte MJ, Laiho LH, So PT. A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation. Biophys J 2004;87(4):2807–17.
- [48] Leung RW, Yeh SC, Fang Q. Effects of incomplete decay in fluorescence lifetime estimation. Biomed Opt Express 2011;2(9):2517–31.
- [49] Pifferi A, Torricelli A, Bassi A, Taroni P, Cubeddu R, Wabnitz H, et al. Performance assessment of photon migration instruments: the MEDPHOT protocol. Appl Opt 2005;44 (11):2104–14.
- [50] Liebert A, Wabnitz H, Obrig H, Erdmann R, Moller M, Macdonald R, et al. Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain. Neuroimage 2006;31(2):600–8.
- [51] Liebert A, Wabnitz H, Grosenick D, Macdonald R. Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media. J Biomed Opt 2003;8(3):512–6.
- [52] Kumar AT, Carp SA, Yang J, Ross A, Medarova Z, Ran C. Fluorescence lifetime-based contrast enhancement of indocyanine green-labeled tumors. J Biomed Opt 2017;22 (4):40501.
- [53] Jones PB, Rozkalne A, Meyer-Luehmann M, Spires-Jones TL, Makarova A, Kumar AT, et al. Two postprocessing techniques for the elimination of background auto fluorescence for fluorescence lifetime imaging microscopy. J Biomed Opt 2008;13(1):014008.
- [54] Rice WL, Kumar AT. Preclinical whole body time domain fluorescence lifetime multiplexing of fluorescent proteins. J Biomed Opt 2014;19(4):046005.
- [55] Hillman EM, Moore A. All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast. Nat Photonics 2007;1(9):526–30.
- [56] Hassan M, Riley J, Chernomordik V, Smith P, Pursley R, Lee SB, et al. Fluorescence lifetime imaging system for in vivo studies. Mol Imaging 2007;6(4):229–36.
- [57] Biffi S, Andolfi L, Caltagirone C, Garrovo C, Falchi AM, Lippolis V, et al. Cubosomes for in vivo fluorescence lifetime imaging. Nanotechnology 2017;28(5):055102.
- [58] Rice WL, Shcherbakova DM, Verkhusha VV, Kumar AT. In vivo tomographic imaging of deep-seated cancer using fluorescence lifetime contrast. Cancer Res 2015;75(7):1236–43.
- [59] May A, Bhaumik S, Gambhir SS, Zhan C, Yazdanfar S. Whole-body, real-time preclinical imaging of quantum dot fluorescence with time-gated detection. J Biomed Opt 2009;14(6):060504.
- [60] Bloch S, Lesage F, McIntosh L, Gandjbakhche A, Liang K, Achilefu S. Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice. J Biomed Opt 2005;10(5):054003.
- [61] Kumar AT. Fluorescence lifetime detection in turbid media using spatial frequency domain filtering of time domain measurements. Opt Lett 2013;38(9):1440–2.
- [62] Rice WL, Hou S, Kumar AT. Resolution below the point spread function for diffuse optical imaging using fluorescence lifetime multiplexing. Opt Lett 2013;38(12):2038–40.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43dd70d9-dd24-435f-960d-20a5cb8eaa6b