PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation and Properties of RDX-Nitrocellulose Microspheres

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new insensitive explosive based on RDX and with Nitrocellulose (NC) as binder has been prepared using a flash vaporization process. Scanning electron microscopy was used to characterize the morphology and particle size of the resulting RDX-NC microspheres. X-ray photoelectron spectroscopy, Differential Scanning Calorimetry, impact sensitivity, vacuum stability and burning rate of raw RDX, RDX-NC and RDX-1 were also used to characterize the explosive. The RDX-NC microspheres were found to have a fibrous surface. The microspheres ranged in size from 0.5 μm to 4 μm. The NC formed a coat on the surface of the RDX. The activation energies of raw RDX, RDX-1 and RDX-NC were found to be 200.8 kJ·mol−1, 183.9 kJ·mol−1 and 187.2 kJ·mol−1, respectively. The drop heights of raw RDX, RDX-1 and RDX-NC were found to be 21.3 cm, 51.7 cm and 82.9 cm, respectively. The friction sensitivity of RDX-NC was lower than that of raw RDX and RDX-1. In the vacuum stability test, the volumes of evolved gas from raw RDX, RDX-1 and RDX-NC were 0.12 mL·g−1, 0.12 mL·g−1, and 0.09 mL·g−1, respectively. The burning rates of RDX-NC-based propellants were higher than that of RDX-1 and raw RDX based propellants at 5-15 MPa. The burning rate pressure exponent of RDX-NC based propellants is 0.9929 at 40-200 MPa.
Rocznik
Strony
871--881
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Chemical Industry and Ecology Institute, North University of China, Shanxi, 030051 Taiyuan, P. R. China
autor
  • Chemical Industry and Ecology Institute, North University of China, Shanxi, 030051 Taiyuan, P. R. China
autor
  • Chemical Industry and Ecology Institute, North University of China, Shanxi, 030051 Taiyuan, P. R. China
Bibliografia
  • [1] Jin B., Peng R.F., Zhao F.Q., Yi J.H., Xu S.Y., Wang S.B., Chu S.J., Combustion Effects of Nitrofulleropyrrolidine on RDX-CMDB Propellants, Propellants Explos. Pyrotech., 2014, 39(6), 874-880.
  • [2] Hou Z.L., Feng Z.G., Wang E.P., Han P.M., The Energy and Pressure Exponent of Composite Modified Double-base Propellant, Propellants Explos. Pyrotech., 1992, 17(2), 59-62.
  • [3] Divekar C.N., Asthana S.N., Singh H., Studies on Combustion of Metallized RDXBased Composite Modified Double-Base Propellants, J. Propul. Power, 2001, 17(1), 58-64.
  • [4] Qin M.N., Zheng X.D., Yan Q.L., Yuan T.G., Tang W., Li H.L., Qiu S.J., Sol-gel Preparation of PZT Powders and Its Catalytic Effect on Burning Rate of RDXCMDB Propellant, Sci. Technol. Energ. Mater., 2012, 73(3-4), 88-92.
  • [5] Asthana S.N., Athawale B.K., Singh H., Impact, Friction, Shock Sensitivities and DDT Behaviour of Advanced CMDB Propellants, Def. Sci. J., 2013, 39(1), 99-107.
  • [6] Raman K.V., Singh H., Ballistic Modification of RDX-Based CMDB Propellants, Propellants Explos. Pyrotech., 1988, 13(5), 149-151.
  • [7] Li T., Hua C., Li Q., Shock Sensitivity of Pressed RDX-Based Plastic Bonded Explosives under Short-Duration and High-Pressure Impact Tests, Propellants Explos. Pyrotech., 2013, 38(6), 770-774.
  • [8] Essel J.T., Cortopassi A.C., Kuo K.K., Leh Ch.G., Adair J.H., Formation and Characterization of Nano-sized RDX Particles Produced Using the RESS-AS Process, Propellants Explos. Pyrotech., 2012, 37(6), 699-706.
  • [9] Swadley M.J., Li T.L., Reaction Mechanism of 1,3,5-Trinitro-s-triazine (RDX) Deciphered by Density Functional Theory, J. Chem. Theory Comput., 2007, 3(2), 505-513.
  • [10] Ismael C.R., Zoltán T., Nan T., Chen H.W., Graham C.R., Desorption Electrospray Ionization of Explosives on Surfaces: Sensitivity and Selectivity Enhancement by Reactive Desorption Electrospray Ionization, Anal. Chem., 2005, 77(21), 6755-6764.
  • [11] Hudson R.J., Zioupos P., Gill P.P., Investigating the Mechanical Properties of RDX Crystals Using Nano-Indentation, Propellants Explos. Pyrotech., 2012, 37(2), 191-197.
  • [12] Liu J., Jiang W., Zeng J.B., Yang Q., Wang Y.J., Li F.S., Effect of Drying on Particle Size and Sensitivities of Nano Hexahydro-1,3,5-trinitro-1,3,5-triazine, Def. Technol., 2014, 10(1), 9-16.
  • [13] Naya T., Kohga M., Influences of Particle Size and Content of HMX on Burning Characteristics of HMX-based Propellant, Aerosp. Sci. Technol., 2013, 27(1), 209-215.
  • [14] Naya T., Kohga M., Influences of Particle Size and Content of RDX on Burning Characteristics of RDX-based Propellant, Aerosp. Sci. Technol., 2014, 32(1), 26-34.
  • [15] Elbeih A., Jungová M., Zeman S., Vávra P., Akštein Z., Explosive Strength and Impact Sensitivity of Several PBXs Based on Attractive Cyclic Nitramines, Propellants Explos. Pyrotech., 2012, 37(3), 329-334.
  • [16] Joseph M.D., Jangid S.K., Satpute R.S., Polke B.G., Nath T., Asthana S.N., Rao A.S., Studies on Advanced RDX/TATB Based Low Vulnerable Sheet Explosives with HTPB Binder, Propellants Explos. Pyrotech, 2009, 34(4), 326-330.
  • [17] Shi X.F., Wang J.Y., Li X.D., An C.W., Preparation and Characterization of HMX/ Estane Nanocomposites, Cent. Eur. J. Energ. Mater., 2014, 11(3), 433-442.
  • [18] Shi X.F., Wang J.Y., Li X.D., An C.W., Ji W., Wang J., Preparation and Properties of 1,3,5,7-Tetranitro-1,3,5,7-tetrazocane based Nanocomposites, Def. Sci. J., 2015, 65(2), 131-134.
  • [19] Shi X.F., Wang C.L., Wang J.Y., Li X.D., An C.W., Ji W., Wang J., Process Optimization and Characterization of an HMX/Viton Nanocomposite, Cent. Eur. J. Energ. Mater., 2015, 12(3), 487-495.
  • [20] Sivabalan R., Gore G.M., Nair U.R., Saikia A., Venugopalan S., Gandhe B.R., Study on Ultrasound Assisted Precipitation of CL-20 and Its Effect on Morphology and Sensitivity, J. Hazard. Mater., 2007, 139(2), 199-203.
  • [21] Degirmenbasi N., Peralta-Inga Z., Olgun U., Gocmez H., Kalyon D.M., Recrystallization of CL-20 and HNFX from Solution for Rigorous Control of the Polymorph Type: Part II, Experimental Studies, J. Energ. Mater., 2006, 24(2), 103-139.
  • [22] Shi X.F., Wang J.Y., Li X.D., An C.W., Preparation and Properties of HMX/ Nitrocellulose Nanocomposites, J. Propul. Power, 2015, 31(2), 757-761.
  • [23] Kissinger H.E., Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29(11), 1702-1706.
  • [24] Armstrong R.W., Dislocation-Assisted Initiation of Energetic Materials, Cent. Eur. J. Energ. Mater., 2005, 2(3), 21-37.
  • [25] Vacuum Stability Test − Method Pressure Transducer (in Chinese), Republic of China National Military Standard, National Defense Science, Technology and Industry Committee, Beijing, 1997.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43d7c062-cd4f-43bf-9b8d-b1dd7079216d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.