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Abstract The work deals with exponential Diophantine equations of a special kind
related to Fibonacci sequences. The classical Diophantine equation relates the sum
of two terms of the sequence to the third. A solution to the problem of the existence
of Diophantine equations relating the sum of two reciprocal terms of the Fibonacci
sequence with the reciprocal of another term of this sequence is given.
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1. Introduction Let Fn be the n-th Fibonacci number defined by F0 =
0, F1 = 1 and

Fn+1 = Fn + Fn−1 (1)

The problem of determining all integer solutions to Diophantine equations
with Fibonacci numbers has gained a considerable amount of interest among
the mathematicians and there is a very broad literature on this subject. In
addition, these numbers show up in many areas of mathematics and in nature.
Also, there is the Lucas sequence, which is as important as the Fibonacci
sequence. The Lucas sequence (Ln)n>0; follows the same recursive pattern as
the Fibonacci numbers, but with initial conditions L0 = 2 and L1 = 1. For
the beauty and rich applications of these numbers and their relatives one can
see Koshy’s book [2]. Many authors worked on the exponential Diophantine
equations related to Fibonacci sequence . See for example [4],[3]. The Natural
Diophantine equation related to Fibonacci sequence is when the sum of two
terms of Fibonacci sequence is a term of Fibonacci sequence; in other words,
the Diophantine equation

Fn + Fm = Fs, n ≥ m > s

has infinity many non-negative solutions regarding to its definition

(n,m, s) = (n, n− 1, n− 2), n > 1

http://dx.doi.org/10.14708/ma.v50i2.7168
https://orcid.org/0000-0002-4415-375X


250 On the Diophantine equation

So, by the defining equality (1) of the Fibonacci numbers and the identity
F 2
n + F 2

n+1 = F2n+1, we see that F 2
n + F 2

n+1 (n > 0) is a Fibonacci number
for s/. Florian Luca and Carlos Alexis Gomez Ruiz [1], had shown that if the
Diophantine equation

F x
n + F x

n+1 = Fm

holds for all sufficiently large n, then . In the same paper, they showed that
the Diophantine equation

F x
n + F x

n+1 = Fm

has no positive integer solution with n ≥ 2 and x ≥ 3. In the contrary side,
the question that can be asked is : " are there two terms of Fibonacci sequence
that the sum of there reciprocal is also a reciprocal term of Fibonacci number
? In an other word, whether the Diophantine equation

F−1
n + F−1

m = F−1
s (2)

has solutions in non-negative integers, when s < m ≤ n ?. In the present
work, we prove that the equation (2) has only two solutions in non-negative
integers (n,m, s) = (3, 3, 1), (3, 3, 2).

2. Preliminary In this section, we present the lemmas that are needed
in the proof of the theorem. The first lemma is a collection of a few well-
known results, we state them without proof, and in the proof of the theorem
sometimes we do not refer to them.

Lemma 2.1 Let k and n be are arbitrary integers

1. gcd(Fk, Fn) = gcd(k, n)

2. (Fn+1, Fn) = 1

3. Fk/Fn if and only if k/n.
4. Assume that n > 1, then

0.38αn < Fn < 0.48αn,

where α = 1+
√
5

2 .

Proof: Let us state the well known Binet formula for the Fibonacci se-
quence

Fn =
αn − βn

α− β
=

αn − βn

√
5

,

where α = 1+
√
5

2 and β = 1−
√
5

2 . are the characteristic roots of the character-
istic polynomial X2−X − 1 of the Fibonacci sequence. Note that α = −β−1.
The Binet formula immediately yields for n > 1 the inequalities

0.38αn < αn 1− α−4

√
5

≤ Fn
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= αn 1− (−1)nα−2n

√
5

≤ αn 1− α−6

√
5

< 0.48αn.

qed

Lemma 2.2 Assume that n ≥ m > 1, then

1. 0.38αn < Fn + Fm < 0.78αn,

2. 0.14αn+m < FnFm < 0.23αn+m.

Proof: Due to Lemma 2.1, we have for all 1 < m ≤ n,

0.38αn < Fn < Fn + Fm

≤ 0.48αn + 0.48αn−1

≤ 0.78αn,

which proves the first statement. For the second statement we use the same
argument we get

(0.38)2αn+m ≤ FnFm ≤ (0.48)2αn+m

then
0.14αn+m ≤ FnFm ≤ 0.23αn+m

qed

3. Main theorem In this section, we give a proof of our result, we use
some properties of Fibonacci numbers cited in Lemma 1, we start by the
following corollary

Corollary 3.1 Assume that 1 < s < m ≤ n, such that F−1
n + F−1

m = F−1
s .

Then
s < m ≤ s+ 2.

Proof: Assume that 1 < s < m ≤ n and F−1
n + F−1

m = F−1
s . Then,

Fs =
FnFm

Fn + Fm
.

But thanks to Lemma 2, we have

0.14αn+m ≤ FnFm ≤ 0.23αn+m

and
0.38αn < Fn + Fm < 0.78αn.

Then
0.29αm <

FnFm

Fn + Fm
< 0.6αm
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it follows that
0.29αm < Fs < 0.6αm.

But we have, for alls > 1

0.38αs < Fs < 0.48αs.

It leads to inequalities
0.38αs < 0.6αm (3)

and
0.29αm < 0.48αs. (4)

For the inequality (3), take Logarithms, we get

s−m < 1 =⇒ m > s− 1.

For (4), take Logarithms, we have

0.601417αm−s ≤ 1 =⇒ m− s ≤ ln 1.6552

lnα
,

it follows that
m ≤ s+ 2.

But m > s then we have
s < m ≤ s+ 2.

and this ends the proof. qed
Now, we can announce the main result,

Theorem 3.2 The negative exponential Diophantine equation (1) has only
two solutions in non-negative (n,m, s) = (3, 3, 1), (3, 3, 2) such that s < m ≤
n. In an other word, we have

F−1
3 + F−1

3 = F−1
1 , F−1

3 + F−1
3 = F−1

2 .

Proof:. Consider the case when s = 1, then our equation (2) becomes

F−1
n + F−1

m = 1 (5)

and the only integers n and m verify the equation (5) are (n,m) = (3, 3). In
fact, we can rewrite the equation (5) as

FnFm = Fn + Fm.

Using Lemma 2, we show that for all m ≤ n, we have

αm ≤ 5.57,

taking Logarithms, we get
m ≤ 3.

Then m = 2 or m = 3. By a simple calculation, we find our solution. For
s > 1, using Corollary (3.1), we can deduce that the only values can take m
are m = s+ 1 or m = s+ 2.



A. Hamtat 253

Case 1: Let m = s+ 1, then the equation (2) can be expressed as

1

Fn
+

1

Fs+1
=

1

Fs
(6)

for some integer s > 1 and n ≥ s+ 1. Simplifying the equation (6), we
have ,

F−1
n =

Fs+1 − Fs

Fs+1Fs

But Fs+1 − Fs = Fs−1, then

Fn =
Fs+1 − Fs

Fs−1
.

This implies that Fs−1 divides the product Fs+1Fs but Fs+1, Fs are
coprime (Lemma 1), then Fs−1 divides Fs+1 or Fs−1 divides Fs, the
second statement can not be hold because Fs−1 and Fs are coprime
(Lemma 1). Then Fs−1 divides Fs+1. By Lemma 1, we deduce that
s − 1/s + 1, so the only values of s are s = 2 or s = 3.For s = 2, we
have

1

Fn
=

1

F2
− 1

F3
= 1− 1

2
=

1

2
.

So that Fn = 2 and n = 3. For s = 3, we deduce that there is no
Fibonacci number such that

1

Fn
=

1

F3
− 1

F4
=

1

2
− 1

=
1

6
.

Case 2: Let m = s+ 2, then the equation (2) can be expressed as

1

Fn
+

1

Fs+2
=

1

Fs
(7)

for some integer s > 1 and n ≥ s+ 2. Simplifying the equation (7), we
get,

F−1
n =

Fs+2 − Fs

Fs+2Fs
implies Fn =

Fs+2Fs

Fs+1
.

By the same argument, we know that Fs+1 can not be a divisor of
both Fs and Fs+2 (Lemma 1), except for s = 1, which contradicts our
assumption s > 1, and this completes the proof.
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O równaniu diofantycznym.
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Streszczenie Praca dotyczy wykładniczych równań diofantycznych szczególnego ro-
dzaju związanych z ciągami Fibonacci’ego. Klasyczne równanie diofantyczne wiąże
wiąże sumę dwóch wyrazów ciągu z trzecim. Podano rozwiązanie problemu istnienia
równań diofantycznych wiążących sumę dwóch odwrotności wyrazów ciągu Fibo-
nacci’ego z odwrotnością innego wyrazu tego ciągu.
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