PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal heat distributions by a gradient-based shape optimization method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we consider the problem of locating coated inclusions in a 2D dimensional conductor material in order to obtain a suitable thermal environment. The mathematical model is described by elliptic partial differential equation with linear boundary condition, including heat transfer coefficient. A shape optimization problem is formulated by introducing a cost functional to solve the problem under consideration. The shape sensitivity analysis is rigorously performed for the problem by means of a Lagrangian formulation. The optimization problem is solved by means of gradient-based strategy and numerical experiments are carried out to demonstrate the feasibility of the approach.
Rocznik
Strony
33--53
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Mathematics, Information Technology and Applications Laboratory (LMIA, EA 3993), 4 rue des Fr`eres Lumi`ere, 68093 Mulhouse cedex, France
autor
  • Department of Mathematics ENIT of Tunisia, Tunisia
autor
  • Department of Mathematics ENIT of Tunisia, Tunisia
Bibliografia
  • [1] Afraites, L., Dambrine, M. and Kateb, D. (2007) Shape methods for the transmission problem with a single measurement. Numer. Funct. Anal. Optim., 28(5-6): 519–551.
  • [2] Amigo, R., Giusti, S. M., Novotny, A. A., Silva, E. and Sokol owski, J. (2016) Optimum design of flextensional piezoelectric actuators into two spatial dimensions. SIAM Journal on Control and Optimization, 54(2): 760–789.
  • [3] Belhachmi, Z., Ben Abda, A., Meftahi, B., and Meftahi, H. (2018) Topologyoptimization method with respect to the insertion of small coated inclusion. Asymptotic Analysis, 106(2): 99–119.
  • [4] Cea, J. (1986) Conception optimale ou identification de formes, calcul rapide de la deriv´ee directionelle de la fonction couˆt. Math. Mod. and Num. Anal., 20: 371–402.
  • [5] Correa, R. and Seeger, A. (1985) Directional derivative of a minimax function. Nonlinear Anal., 9(1): 13–22.
  • [6] Dambrine, M., Harbrecht, H. and Puig, B. (2015) Computing quantities of interest for random domains with second order shape sensitivity analysis. ESAIM Math. Model. Numer. Anal., 49(5): 1285–1302.
  • [7] Dambrine, M. and Laurain, A. (2016) A first order approach for worstcase shape optimization of the compliance for a mixture in the low contrast regime. Struct. Multidiscip. Optim., 54(2): 215–231.
  • [8] Delfour, M. (2012) Introduction to Optimization and Semidifferential Calculus. MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics.
  • [9] Delfour, M. C. and Zol´esio, J.-P. (1988) Shape sensitivity analysis via min max differentiability. SIAM J. Control Optim., 26(4): 834–862.
  • [10] Delfour, M. C. and Zol´esio, J.-P. (2011) Shapes and Geometries. Volume 22 of Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition.
  • [11] Ekeland, I. and Temam, R. (1974) Analyse convexe et probl`emes variationnels. Dunod, Collection ´Etudes Math´ematiques.
  • [12] Gangl, P., Langer, U., Laurain, A., Meftahi, H. and Sturm, K. (2015) Shape optimization of an electric motor subject to nonlinear magnetostatics. SIAM J. Sci. Comput., 37(6): B1002–B1025.
  • [13] Giusti, S., Mroz, Z., Novotny, A. and Sokol owski, J. (2017) Topology design of thermomechanical actuators. Structural and Multidisciplinary Optimization, 55(5): 1575–1587.
  • [14] Giusti, S. M., Novotny, A. A. and Sokol owski, J. (2010) Topological derivative for steady-state orthotropic heat diffusion problem. Struct. Multidiscip. Optim., 40(1-6): 53–64.
  • [15] Habbal, A. (1998) Nonsmooth shape optimization applied to linear acoustics. SIAM Journal on Optimization, 8(4): 989–1006.
  • [16] Harbrecht, H. and Loos, F. (2016) Optimization of current carrying multicables. Computational Optimization and Applications, 63(1): 237–271.
  • [17] Ito, K., Kunisch, K. and Peichl, G. H. (2008) Variational approach to shape derivatives. ESAIM Control Optim. Calc. Var., 14(3): 517–539.
  • [18] Kasumba, H. and Kunisch (2011) On shape sensitivity analysis of the cost functional without shape sensitivity of the state variable. Control and Cybernet., 14(4): 989–1017.
  • [19] Kasumba, H. and Kunisch, K. (2014) On computation of the shape hessian of the cost functional without shape sensitivity of the state variable. Journal of Optimization Theory and Applications, 1–26, DOI 10.1007/S10957013-0520-4.
  • [20] Laurain, A. and Sturm, K. (2016) Distributed shape derivative via averaged adjoint method and applications. ESAIM: Mathematical Modelling and Numerical Analysis, 50(4): 1241–1267.
  • [21] Loos, F., Dvorsky, K. and Liess, H.-D. (2014) Two approaches for heat transfer simulation of current carrying multicables. Mathematics and Computers in Simulation, 101: 13–30.
  • [22] Meftahi, H. (2017) Stability analysis in the inverse Robin transmission problem. Math. Methods Appl. Sci., 40(7): 2505–2521.
  • [23] Meftahi, H. and Zol´esio, J.-P. (2015) Sensitivity analysis for some inverse problems in linear elasticity via minimax differentiability. Appl. Math. Model., 39(5-6): 1554–1576.
  • [24] Novotny, A. A. and Sokolowski, J. (2013) Topological Derivatives in Shape Optimization. Interaction of Mechanics and Mathematics. Springer, Heidelberg.
  • [25] Pantz, O. (2005) Sensibilit´e de l’´equation de la chaleur aux sauts de conductivit´e. C. R. Math. Acad. Sci. Paris, 341(5): 333–337.
  • [26] Sokolowski, J. and Zolesio, J.-P. (1992) Introduction to Shape Optimization, Springer Series in Computational Mathematics 16. Springer-Verlag, Berlin.
  • [27] Sturm, K. (2013) Lagrange method in shape optimization for non-linear partial differential equations: A material derivative free approach. Technical Report No. 1817. Weierstrass-Institut f. Angewandte Analysis u. Stochastik, Berlin.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43d331f8-07b8-4a76-851a-ae84fd9ba236
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.