PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Blade section profile array lifting surface design method for marine screw propeller blade

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The lifting surface model is widely used in screw propeller design and analysis applications. It serves as a reliable tool for determination of the propeller blade mean line and pitch distribution. The main idea of this application was to determine the blade shape that would satisfy the kinematic boundary condition on its surface with the prescribed bound circulation distribution over it. In this paper a simplified lifting surface method is presented – in which the 3D task for the entire blade is replaced by a set of 2D tasks for subsequent blade section profiles.
Rocznik
Tom
Strony
134--141
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Ship Design and Research Centre Szczecińska 65, 80-392 Gdańsk
  • Gdańsk University of Technology, Gabriela Narutowicza, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Bugalski T., Streckwall H., Szantyr J. A. (2013): Critical review of propeller performance scaling methods, based on model experiments and numerical calculations. Polish Maritime Research, 4(80), Vol. 20, 71–80.
  • 2. Brockett T. (1981): Lifting-Surface Hydrodynamics for Design of Rotating Blades, Propellers ’81 Symposium.
  • 3. Gaggero S., Gonzalez-Adalid J., Perez Sobrino M. (2016): Design of contracted and tip loaded propellers by using boundary element methods and optimization algorithms. Applied Ocean Research, Vol. 55, 102–129.
  • 4. Greeley D. S., Kerwin J. E. (1982): Numerical methods for propeller design and analysis in steady flow. SNAME Transactions, Vol. 90, 415–453.
  • 5. Jarzyna H., Koronowicz T., Szantyr J. A. (1996): Design of marine propellers, Selected problems. Ossolineum, Wrocław.
  • 6. Kobyliński L. (1955): Śruby okrętowe (in Polish). Wydawnictwo Komunikacyjne, Warszawa.
  • 7. Koyama K. (1993): Comparative calculations of propellers by surface panel method, Workshop organized by 20th ITTC Propulsor Committee. Papers of Ship Research Institute.
  • 8. Król P., Bugalski T. (2018): Application of vortex flow model in propeller – stator system design and analysis. Polish Maritime Research, 1(97), Vol. 25, 35–44.
  • 9. Król P., Tesch K. (2018): Experimental and numerical validation of the improved vortex method applied to CP745 marine propeller model. Polish Maritime Research, 2(98), Vol. 25, 57–66.
  • 10. Lee K. J., Hoshino T., Lee J. H. (2014): A lifting Surface optimization method for the design of marine propeller blades. Ocean Engineering, Vol. 88, 472–470.
  • 11. Lee T., Park S. O. (2009): Improved iteration algorithm for nonlinear vortex lattice method. Journal of Aircraft, Vol. 46, No. 6.
  • 12. Luca G., Roberto M., Claudio T. (2014): Marine propellers performance and flow-field prediction by a free-wake panel method. Journal of Hydrodynamics, Vol. 26 (5), 780–795.
  • 13. Miclea-Bleiziffer M., Untaroiu A., Delgado A. (2014): Development of a novel design method for marine propellers by computing the exact lift of arbitrary hydrofoils in cascade. Ocean Engineering, Vol. 83, 87–98.
  • 14. Morgan B., Silovic V., Denny S. B. (1968): Propeller Lifting-Surface Corrections. SNAME Transactions, Vol. 76, 309–347.
  • 15. Muscari R., Mascio A., Verzicco R. (2013): Modeling of vortex dynamics in the wake of a marine propeller. Computers & Fluids, Vol. 73, 65–79.
  • 16. Noosomton J., Gunnuang W. (2017): Case study on CFD simulation and experiment of new developed propeller for training Thai boat. Fifth International Symposium on Marine Propulsors – SMP’17, Espoo.
  • 17. Suchecki W. (2018): Studies on velocity fields around the cavitation vortices generated by the model of a rotating blade. Polish Maritime Research, 2(98), Vol. 25, 66–70.
  • 18. Szantyr J. (1984): Deformable lifting surface method for determination of unsteady cavitation on screw propeller blade and its hydrodynamic results (in Polish). IMP PAN Gdańsk.
  • 19. Zeraatgar H., Hossein Ghaemi M. (2019): The analysis of overall ship fuel consumption in acceleration manoeuvre using hull-propeller-engine interaction principles and governor features. Polish Maritime Research, 1(101), Vol. 26, 162–173.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43d12703-473e-4c2a-9cee-6f5d1b00b406
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.