PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Does topography of rocky intertidal habitat affect aggregation of cerithiid gastropods and co-occurring macroinvertebrates?

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Species aggregation has important implications for population survivorship and ecological functioning in many habitats, including rocky intertidal shores, which have been valuable to research for understanding ecological patterns and process. Intertidal gastropods of the family Cerithiidae often form extensive aggregations for which the driving mechanism may be positive thigmotaxis, i.e. movement occurring until an obstructing surface is contacted, then cessation of movement. However, it is unknown if thigmotaxis may occur by cerithiids contacting and aggregating around uneven surfaces of the rock topography, or by contacting other conspecific individuals. We quantified aggregation patterns in invertebrate assemblages and topographic complexity at intertidal rock platforms in NW India with extensive cerithiid populations. The cerithiids Clypeomorus moniliferus and Cerithium caeruleum were the most common species. Distribution analysis confirmed significant over-dispersion indicative of aggregation (densities were often around zero but occasionally reached up to 680 dm−2). Multivariate correlation analyses showed that topographic complexity contributes to overall species assemblage variability, but there was no evidence that topographic complexity correlates with cerithiid abundances or was likely to affect their aggregation. Thus the thigmotaxis producing cerithiid aggregation is probably associated with individuals contacting each other rather than any feature of the rock surface such as crevices or raised areas. Overall, while some components of species assemblages were associated with complex topography, regarding the abundant cerithiids, potential population benefits from aggregation (e.g. reduced desiccation and temperature) may be expected on rocky shores with any level of topographic complexity.
Czasopismo
Rocznik
Strony
387--395
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
  • Department of Biosciences, Saurashtra University, Gujarat State, India
  • Estonian Marine Institute, University of Tartu, Tallinn, Estonia
autor
  • Department of Biosciences, Saurashtra University, Gujarat State, India
Bibliografia
  • 1. Aguilera, M.A., Broitman, B.R., Thiel, M., 2014. Spatial variability in community composition on a granite breakwater versus natural rocky shores: Lack of microhabitats suppresses intertidal biodiversity. Mar. Pol. Bull. 87, 257-268. https://doi.org/10.1016/j.marpolbul.2014.07.046
  • 2. Aguilera, M.A., Navarrete, S.A., 2011. Distribution and activity patterns in an intertidal grazer assemblage: influence of temporal and spatial organization on interspecific associations. Mar. Ecol. Prog. Ser. 431, 119-136. https://doi.org/10.3354/meps09100
  • 3. Anderson, M.J., Gorley, R.N., Clarke, K.R., 2008. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth. http://updates.primer-e.com/primer7/manuals/PERMANOVA+_manual.pdf
  • 4. Ayal, Y., Safriel, U.N., 1982. Role of competition and predation in determining habitat occupancy of Cerithiidae (Gastropoda: Prosobranchia) on the rocky, intertidal, Red Sea coasts of Sinai. Mar. Biol. 70, 305-316. https://doi.org/10.1007/BF00396849
  • 5. Azhar, G.S., Mavalankar, D., Nori-Sarma, A., Rajiva, A., Dutta, P., Jaiswal, A., Sheffield, P., Knowlton, K., Hess, J.J., 2014. Heat-related mortality in India: Excess all-cause mortality associated with the 2010 Ahmedabad heat wave. PLoS One 9 (3), e91831. https://doi.org/10.1371/journal.pone.0091831
  • 6. Beck, M.W., 1998. Comparison of the measurement and effects of habitat structure on gastropods in rocky intertidal and mangrowe habitats. Mar. Ecol. Prog. Ser. 169, 165-178. https://doi.org/10.3354/meps169165
  • 7. Bhadja, P., Poriya, P., Kundu, R., 2014. Community structure and distribution pattern of intertidal invertebrate macro-fauna at some anthropogenically influenced coasts of Kathiawar peninsula (India). Adv. Ecol. 2014 Article ID 547395. https://doi.org/10.1155/2014/547395.
  • 8. Button, C.A., 2008. The influence of density-dependent aggregation characteristics on the population biology of benthic broadcast-spawning gastropods: pink abalone (Haliotis corrugata), red abalone (Haliotis rufescens), and wavy turban snails (Megastraea undosa) PhD thesis. University of California, San Diego.
  • 9. Cannon, L.R.G., 1979. Ecological Observations on Cerithium moniliferum Kiener (Gastropoda: Cerithiidae) and its trematode parasites at Heron Island, Great Barrier Reef. Aust. J. Mar. Fresh. Res. 30, 365-374. https://doi.org/10.1071/MF9790365
  • 10. Chapman, M.G., Underwood, A.J., 1994. Dispersal of the intertidal snail, Nodilittorina pyramidalis, in response to the topographic complexity of the substratum. J. Exp. Mar. Biol. Ecol. 179, 145-169. https://doi.org/10.1016/0022-0981(94)90111-2
  • 11. Chapman, M.G., 1995. Aggregation of the littorinid snail Littorina unifasciata in New South Wales. Australia. Mar. Ecol. Prog. Ser. 126, 191-202. https://doi.org/10.3354/meps126191
  • 12. Chapman, M.G., Underwood, A.J., 1996. Influences of tidal conditions, temperature and desiccation on patterns of aggregation of the high-shore periwinkle, Littorina unifasciata, in New South Wales, Australia. J. Exp. Mar. Biol. Ecol. 196, 213-237. https://doi.org/10.1016/0022-0981(95)00131-X
  • 13. Chapman, M.G., 1998. Variability in trail-following and aggregation in Nodilittorina unifasciata Gray. J. Exp. Mar. Biol. Ecol. 224, 49-71. https://doi.org/10.1016/S0022-0981(97)00169-X
  • 14. Chapperon, C., Le Bris, C., Seuront, L., 2013. Thermally mediated body temperature, water content and aggregation behaviour in the intertidal gastropod Nerita atramentosa. Ecol. Res. 28, 407-416. https://doi.org/10.1007/s11284-013-1030-4
  • 15. Coleman, R.A., 2010. Limpet aggregation does not alter desiccation in the limpet Cellana tramoserica. J. Exp. Mar. Biol. Ecol. 386, 113-118. https://doi.org/10.1016/j.jembe.2010.02.011
  • 16. Denadai, M.R., Amaral, A.C.Z., Turra, A., 2004. Biology of a tropical intertidal population of Cerithium atratum (Born, 1778) (Mollusca, Gastropoda). J. Nat. Hist. 38, 1695-1710. https://doi.org/10.1080/0022293031000156330
  • 17. Fairweather, P.G., 1988. Predation creates haloes of bare space among prey on rocky seashores in New South Wales. Aust. J. Ecol. 13, 401-409. https://doi.org/10.1111/j.1442-9993.1988.tb00988.x
  • 18. Garilli, V., Galletti, L., Parrinello, D., 2018. Distinct protoconchs recognised in three of the larger Mediterranean Cerithium species (Caenogastropoda: Cerithiidae). Molluscan Res. 38, 105-118. https://doi.org/10.1080/13235818.2017.1396633
  • 19. Garrity, S.D., Levings, S.C., 1981. A predator-prey interaction between two physically and biologically constrained tropical rocky shore gastropods: direct, indirect and community effects. Ecol. Monogr. 51, 267-286. https://doi.org/10.2307/2937274
  • 20. Grayson, J.E., Chapman, M.G., 2004. Patterns of distribution and abundance of chitons of the genus Ischnochiton in intertidal boulder fields. Aust. J. Ecol. 29, 363-373. https://doi.org/10.1111/j.1442-9993.2004.01375.x
  • 21. Green, J.L., Ostling, A., 2003. Endemics—area relationships: the influence of species dominance and spatial aggregation. Ecology 84, 3090-3097. https://doi.org/10.1890/02-3096
  • 22. Hallier, J.P., Gaertner, D., 2008. Drifting fish aggregation devices could act as an ecological trap for tropical tuna species. Mar. Ecol. Prog. Ser. 353, 255-264. https://doi.org/10.3354/meps07180
  • 23. He, H.S., DeZonia, B.E., Mladenoff, D.J., 2000. An aggregation index (AI) to quantify spatial patterns of land-scapes. Landscape Ecol. 15, 591-601. https://doi.org/10.1023/A:1008102521322
  • 24. Ishakani, A.H., Joshi, N.H., Ayaz, M., Sumara, K., Vadher, K.H., 2016. Assessment of seaweed diversity at Veraval coast, Gujarat. J. Exp. Zool. India 19 (2), 863-868.
  • 25. Lapointe, V., Sainte-Marie, B., 1992. Currents, predators, and the aggregation of the gastropod Buccinum undatum around bait. Mar. Ecol. Prog. Ser. 85, 245-257 https://www.jstor.org/stable/24829760
  • 26. Lauzon-Guay, J.S., Scheibling, R.E., 2009. Food dependent movement of periwinkles (Littorina littorea) associated with feeding fronts. J. Shellfish Res. 28, 581-587. https://doi.org/10.2983/035.028.0322
  • 27. Loke, L.H., Heery, E.C., Lai, S., Bouma, T.J., Todd, P.A., 2019. Area-independent effects of water-retaining features on intertidal biodiversity on eco-engineered seawalls in the tropics. Front. Mar. Sci. 6, 16. https://doi.org/10.3389/fmars.2019.00016
  • 28. Meager, J.J., Schlacher, T.A., Green, M., 2011. Topographic complexity and landscape temperature patterns create a dynamic habitat structure on a rocky intertidal shore. Mar. Ecol. Prog. Ser. 428, 1-12. https://doi.org/10.3354/meps09124
  • 29. Misra, S., Kundu, R., 2005. Seasonal variations in population dynamics of key intertidal molluscs at two contrasting locations. Aquat. Ecol. 39, 315-324. https://doi.org/10.1007/s10452-005-1779-9
  • 30. Moisez, E., Spilmont, N., Seuront, L., 2020. Microhabitats choice in intertidal gastropods is species-, temperature- and habitat-specific. J. Therm. Biol. 94, 102785. https://doi.org/10.1016/j.jtherbio.2020.102785
  • 31. Montecinos, C., Riera, R., Brante, A., 2020. Site fidelity and homing behaviour in the intertidal species Chiton granosus (Polyplacophora) (Frembly 1889). J. Sea Res. 164, 101932. https://doi.org/10.1016/j.seares.2020.101932
  • 32. Moulton, J.M., 1962. Intertidal clustering of an Australian gas-tropod. Biol. Bull. 123, 170-178. https://doi.org/10.2307/1539513
  • 33. Nicolaidou, A., Nott, J.A., 1999. The role of the marine gastropod Cerithium vulgatum in the biogeochemical cycling of metals. In: Biogeochemical Cycling and Sediment Ecology, 59. Springer, Dordrecht, 137-146. https://doi.org/10.1007/978-94-011-4649-4_7
  • 34. Ray, M., Stoner, A.W., 1994. Experimental analysis of growth and survivorship in a marine gastropod aggregation: balancing growth with safety in numbers. Mar. Ecol. Prog. Ser. 105, 47-59.
  • 35. Rojas, J.M., Castillo, S.B., Escobar, J.B., Shinen, J.L., Bozinovic, F.,2013. Huddling up in a dry environment: the physiological benefits of aggregation in an intertidal gastropod. Mar. Biol. 160, 1119-1126. https://doi.org/10.1007/s00227-012-2164-6
  • 36. ohde, K., Sandland, R., 1975. Factors influencing clustering in the intertidal snail Cerithium moniliferum. Mar. Biol. 30, 203-215. https://doi.org/10.1007/BF00390743
  • 37. Schmitt, R.J., 1987. Indirect interactions between prey: Apparent competition, predator aggregation, and habitat segregation. Ecology 68, 1887-1897. https://doi.org/10.2307/1939880
  • 38. Snyder-Conn, E., 1979. Tidal clustering and dispersal of the hermit crab Clibanarius digueti. Mar. Behav. Physiol. 7, 135-154. https://doi.org/10.1080/10236248009386977
  • 39. Stafford, R., Davies, M.S., 2005. Spatial patchiness of epilithic biofilm caused by refuge-inhabiting high shore gastropods. Hydrobiologia 545, 279-287. https://doi.org/10.1007/s10750-005-3320-5
  • 40. Stafford, R., Davies, M.S., Williams, G.A., 2008. Self-organization intertidal snails facilitates evolution of aggregation behavior. Artif. Life 14, 409-423. https://doi.org/10.1162/artl.2008.14.4.14401
  • 41. Stafford, R., Davies, M.S., Williams, G.A., 2012. Misinterpreting the potential benefits of aggregation for reducing desiccation in the intertidal: a simple analogy. Mar. Ecol. 33, 512-515. https://doi.org/10.1111/j.1439-0485.2012.00513.x
  • 42. Stoll, P., Prati, D., 2001. Intraspecific aggregation alters competitive interactions in experimental plant communities. Ecology 82, 319-327 https://doi.org/10.1890/0012-658(2001)082[0319:IAACII]2.0.CO;2
  • 43. Thivakaran, G.A., Sawale, A.K., 2016. Mangrove macrofaunal diversity and community structure in Mundra and Kharo, Kachchh, Gujarat. Indian J. Geo-Mar. Sci. 45, 1584-1592. http://nopr.niscair.res.in/handle/123456789/38600
  • 44. Underwood, A.J., 2004. Landing on one’s foot: small-scale topo-graphic features of habitat and the dispersion of juvenile intertidal gastropods. Mar. Ecol. Prog. Ser. 268, 173-182. http://doi.10.3354/meps268173
  • 45. Underwood, A.J., Chapman, M.G., 1989. Experimental analyses of the influences of topography of the substratum on movements and density of an intertidal snail, Littorina unifasciata. J. Exp. Mar. Biol. Ecol. 134, 175-196. https://doi.org/10.1016/0022-0981(89)90068-3
  • 46. Underwood, A.J., Chapman, M.G., Connell, S.D., 2000. Observations in ecology: you can’t make progress on processes without understanding the patterns. J. Exp. Mar. Biol. Ecol. 250, 97-115. https://doi.org/10.1016/S0022-0981(00)00181-7
  • 47. Yamaguchi, M., 1977. Shell growth and mortality rates in the coral reef gastropod Cerithium nodulosum in Pago Bay, Guam, Mariana Islands. Mar. Biol. 44, 249-263. https://doi.org/10.1007/BF00387706
  • 48. Yu, Z., Hu, Z., Song, H., Xu, T., Yang, M., Zhou, C., Zhang, T., 2020. Aggregation behavior of juvenile Neptunea cumingii and effects on seed production. J. Oceanol. Limnol. 38, 1590-1598. https://doi.org/10.1007/s00343-020-0042-5
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43cd1bf3-81a1-4530-8123-f8562ec6bc7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.