PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the mechanism of fatigue failure of the Refill Friction Stir Spot Welded overlap joints

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work is the experimental investigation of fatigue failure in Refill Friction Stir Spot Welding joints. The specimens for the fatigue analysis were made of 0.8-mm-thick and 1.6-mm-thick 7075-T6 aluminium alloy which is used to fabricate aircraft fuselages con-sisting of a plate skin with a stiffening stringer. The load capacity of joints was determined by tensile/shear tests. Fatigue tests were carried out on an Instron E10000 testing machine at room temperature. High-cycle fatigue tests were carried out under the following conditions: a limited number of cycles equal to 2 _ 106, a frequency of 50 (Hz), and a coefficient of stress cycle R = 0.1. Microstructural features of fatigue fractures for different levels of variable load were examined using Scanning Electron Microscopy micrographs. The analysis of the fatigue fractures reveals that the Alclad layer at the bottom of the weld is a kind of structural notch and in this situation can be the location of the initiation of fatigue cracking. It was found that fracture mechanism depends on the value of load amplitude. Analysis of the SEM micrographs of fatigue fractures shown that the thermo-mechanically affected zone and heat affected zone are sources of fatigue failure.
Rocznik
Strony
1419--1430
Opis fizyczny
Bibliogr. 27 poz., rys., wykr.
Twórcy
  • Department of Manufacturing and Production Engineering, Rzeszow University of Technology, 8 Powst. Warszawy Ave., 35-959 Rzeszów, Poland
  • bDepartment of Materials Forming and Processing, Rzeszow University of Technology, 8 Powst. Warszawy Ave., 35-959 Rzeszów, Poland
  • Department of Mathematics and Natural Sciences, University of Rzeszow, 1 Pigonia St., 35-310 Rzeszów, Poland
  • Department of Mechanics and Mechanical Engineering, University of Rzeszow, 1 Pigonia St., 35-310 Rzeszów, Poland
autor
  • Belgian Welding Institute, Technologiepark-Zwijnaarde 935, 9052 Gent, Belgium
Bibliografia
  • [1] M.S. Weglowski, Friction stir processing — state of the art, Arch. Civ. Mech. Eng. 18 (1) (2017) 114–129.
  • [2] K.K. Ramachandran, N. Murugan, S.S. Kumar, Influence of tool traverse speed on the characteristics of dissimilar friction stir welded aluminium alloy, AA5052 and HSLA steel joints, Arch. Civ. Mech. Eng. 15 (4) (2015) 822–830.
  • [3] K.V. Jata, K.K. Sankaran, J.J. Ruschau, Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451, Metall. Mater. Trans. A 31 (9) (2000) 2181–2192.
  • [4] L. Dubourg, A. Merati, M. Jahazi, Process optimisation and mechanical properties of friction stir lap welds of 7075-T6 stringers on 2024-T3 skin, Mater. Des. 31 (7) (2010) 3324–3330.
  • [5] T. Rosendo, B. Parra, M.A.D. Tier, A.A.M. da Silva, J.F. dos Santos, T.R. Strohaecker, N.G. Alcântara, Mechanical and microstructure investigation of friction spot welded AA6181- T4 aluminum alloy, Mater. Des. 32 (3) (2011) 1094–1100.
  • [6] Y. Uematsu, K. Tokaj, Comparison of fatigue behavior between resistance spot and friction stir spot welded aluminum alloy sheets, Sci. Technol. Weld. Join. 14 (1) (2009) 62–67.
  • [7] P. Lacki, A. Derlatka, T. Galaczynski, Selection of basic position in refill friction stir spot welding of 2014-T3 and D16UTW aluminium alloy sheets, Arch. Metall. Mater. 62 (1) (2018) 443–449.
  • [8] J. Andres, A. Wronska, T. Galaczynski, G. Luty, R. Burek, Effect of process parameters on microstructure and mechanical properties of RFSSW lap joints of thin Al7075-T6 sheets, Arch. Metall. Mater. 63 (1) (2018) 39–43.
  • [9] M. Pedemonte, C. Gambaro, E. Lertora, C. Mandolfino, Fatigue assessment of AA 8090 friction stir butt welds after surface finishing treatment, Aerosp. Sci. Technol. 27 (1) (2013) 188– 192.
  • [10] A.K. Lakshminarayanan, V. Balasubramanian, Assessment of fatigue life and crack growth resistance of friction stir welded AISI 409M ferritic stainless steel joints, Mater. Sci. Eng. A 539 (2012) 143–153.
  • [11] J. Azevedo, V. Infante, L. Quintino, J. dos Santos, Fatigue behaviour of friction stir welded steel joints, Adv. Mat. Res. 891-892 (2014) 1488–1493.
  • [12] A. Toumpis, A. Galloway, L. Molter, H. Polezhayeva, Systematic investigation of the fatigue performance of a friction stir welded low alloy steel, Mater. Des. 80 (2015) 116– 128.
  • [13] X.J. Wang, X.L. Wang, Z.K. Zhang, L. Wang, Q.S. Zhao, X.B. Deng, Fatigue behavior of friction spot stir welding with no-keyhole of aluminum alloy, Adv. Mat. Res. 1052 (2014) 509– 513.
  • [14] Y. Uematsu, K. Tokaji, Y. Tozaki, T. Kurita, S. Murata, Effect of re-filling probe hole on tensile failure and fatigue behavior of friction stir spot welded joints in Al–Mg–Si alloy, Int. J. Fatigue 30 (10-11) (2008) 1956–1966.
  • [15] A. Kubit, R. Kluz, T. Trzepiecinski, D. Wydrzynski, W. Bochnowski, Analysis of the mechanical properties and of micrographs of refill friction stir spot welded 7075-T6 aluminium sheets, Arch. Civ. Mech. Eng. 18 (1) (2018) 235–244.
  • [16] A. Kubit, T. Trzepiecinski, K. Faes, M. Drabczyk, W. Bochnowski, M. Korzeniowski, Analysis of the effect of structural defects on the fatigue strength of RFSSW joints using C-scan scanning acoustic microscopy and SEM, Fatigue Fract. Eng. Mater. Struct. 42 (6) (2019) 1308–1321.
  • [17] A. Kubit, T. Trzepiecinski, L. Swiech, K. Faes, J. Slota, Experimental and numerical investigations of thin-walled stringer-stiffened panels welded with RFSSW technology under uniaxial compression, Materials 12 (2019) 1785.
  • [18] ISO 6892-1:2016 - Metallic materials – Tensile testing – Part 1: Method of test at room temperature.
  • [19] D. Roylance, Fatigue, Massachusetts Institute of Technology, Cambridge, 2001 http://web.mit.edu/course/3/3.11/www/ modules/fatigue.pdf.
  • [20] Z. Shen, X. Yang, Z. Zhang, L. Cui, T. Li, Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joint, Mater. Des. 44 (2013) 476–486.
  • [21] T.G. Santos, R.M. Miranda, P. Vilaca, Microstructural mapping of friction stir welded AA 7075-T6 and AlMgSc alloys using electrical conductivity, Sci. Technol. Weld. Join. 16 (2011) 630– 635.
  • [22] H.B. Chen, J.F. Wang, G.D. Zhen, S.B. Chen, T. Lin, Effects of initial oxide on microstructural and mechanical properties of friction stir welded AA2219 alloy, Mater. Des. 86 (2015) 49–54.
  • [23] J.D.M. Costa, J.A.M. Ferreira, L.F. Borrego, L.M.P. Abreu, Fatigue behaviour of AA6082 friction stir welds under variable loadings, Int. J. Fatigue 37 (2012) 8–16.
  • [24] S. Venukumar, S. Muthukumaran, S.G. Yalagi, S.V. Kailas, Failure modes and fatigue behavior of conventional and refilled friction stir spot welds in AA 6061-T6 sheets, Int. J. Fatigue 61 (2014) 93–100.
  • [25] S. Muthukumaran, An improved friction forming process and a friction forming machine with a tool and fixture. Patent Number: 242420, 2010.
  • [26] J. Schneider, P. Chen, A.C. Nunes, Formation of oxides in the interior of friction stir welds, Proc. 11th International Friction Stir Welding Symposium (2016).
  • [27] S. Arul, S.F. Miller, G.H. Kruger, T.Y. Pan, Experimental study of joint performance in spot friction welding of 6111- T4 aluminium alloy, Sci. Technol. Weld. Join. 13 (7) (2008) 629–637.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43c60e39-9c16-44db-a9f6-ae9d65b0b0aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.