Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Niezawodne i wydajne modelowanie propagacji nieliniowych fal sprężystych metodą różnic skończonych w dziedzinie czasu
Języki publikacji
Abstrakty
A robust finite-difference-time-domain (FDTD ) scheme to model the non-linear elastic wave propagation in a homogeneous isotropic material is presented. A formulation based on rotated staggered grid scheme in a displacement-velocity-stress configuration incorporating both geometric and material nonlinearities is proposed. By adopting a Parsimonious algorithm, the computational memory requirement is reduced by 50%. Simulations are accelerated by exploiting massive data parallelism innate to the FDTD approach using parallel computation on Graphical Processing Units with NVIDIA CUDA ’s API. For the proposed numerical scheme, the grid convergence criterion and accuracy over propagating distances are investigated. The study is also extended to determine the contribution from geometric and material models at various input amplitude levels. The time and frequency domain signals obtained from the proposed scheme are verified with a commercial finite element solver. The simulation runtimes for an Aluminium sample of dimensions 20 mm x 10 mm using a 5 MHz pulse is of the order of one minute, which makes the proposed numerical scheme attractive to model nonlinear elastic waves in large domains.
W artykule przedstawiono odporny schemat metody różnic skończonych w dziedzinie czasu (FDTD ) do modelowania propagacji nieliniowych fal sprężystych w jednorodnym materiale izotropowym. Zaproponowano podejście oparte na rotowanych siatkach przestawnych w układzie przemieszczenie- prędkość-naprężenie obejmującym zarówno nieliniowość geometryczną, jak i materiałową. Zastosowanie algorytmu redukcji oszczędnej, zmniejszyło zapotrzebowanie na pamięć obliczeniową o 50%. Symulacje są przyspieszane przez wykorzystanie olbrzymiego paralelizmu danych wbudowanego w podejście FDTD z wykorzystaniem obliczeń równoległych na jednostkach przetwarzania graficznego (GPU) wyposażonych w interfejs API NVIDIA CUDA . Dla proponowanego schematu numerycznego badane jest kryterium zbieżności siatki i dokładność w funkcji odległości propagacji. Badanie rozszerzono również w celu określenia wkładu modeli geometrycznych i materiałowych na różnych poziomach amplitudy wejściowej. Sygnały w dziedzinie czasu i częstotliwości uzyskane z proponowanego schematu są weryfikowane za pomocą komercyjnego oprogramowania wykorzystującego metodę elementów skończonych. Czasy pracy dla symulacji propagacji impulsu o częstotliwości 5 MHz w próbce aluminium o wymiarach 20 mm x 10 mm są rzędu jednej minuty, co sprawia, że proponowany schemat liczbowy jest atrakcyjny dla modelowania nieliniowych fal sprężystych w dużych domenach.
Czasopismo
Rocznik
Tom
Strony
11--21
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
autor
- Centre for Non-Destructive Evaluation, Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai, India
autor
- Centre for Non-Destructive Evaluation, Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai, India
autor
- Centre for Non-Destructive Evaluation, Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai, India
- Department of Physics, Indian Institute of Technology, Madras, Chennai, India
autor
- Centre for Non-Destructive Evaluation, Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai, India
Bibliografia
- [1] M.A. Breazeale, D.O. Thompson, Finite-amplitude ultrasonic waves in aluminum, Appl. Phys. Lett. 3 (1963) 77–78. doi:10.1063/1.1753876.
- [2] M.A. Breazeale, J. Ford, Ultrasonic studies of the nonlinear behavior of solids, J. Appl. Phys. 36 (1965) 3486–3490. doi:10.1063/1.1703023.
- [3] P.A. Johnson, B. Zinszner, P.N.J. Rasolofosaon, Resonance and elastic nonlinear phenomena in rock, J. Geophys. Res. Solid Earth. 101 (1996) 11553–11564. doi:10.1029/96JB00647.
- [4] L.A. Ostrovsky, P.A. Johnson, Dynamic nonlinear elasticity in geomaterials, Riv. Del. 24 (2001) 1–46. doi:10.1029/2002JB002038.
- [5] I.Y. Solodov, N. Krohn, G. Busse, CAN: An example of nonclassical acoustic nonlinearity in solids, Ultrasonics. 40 (2002) 621–625. doi:10.1016/S0041-624X(02)00186-5.
- [6] K.E.-A. Van Den Abeele, P.A. Johnson, A. Sutin, Nonlinear Elastic Wave Spectroscopy (NE WS) Techniques to Discern Material Damage, Part I: Nonlinear Wave Modulation Spectroscopy (NWMS), Res. Nondestruct. Eval. 12 (2000) 17–30. doi:10.1080/09349840009409646.
- [7] G.D. Meegan, P.A. Johnson, R.A. Guyer, K.R. McCall, Observations of nonlinear elastic wave behavior in sandstone, J. Acoust. Soc. Am. 94 (1993) 3387–3391. doi:10.1121/1.407191.
- [8] R.A. Guyer, K.R. McCall, K. Van Den Abeele, Slow elastic dynamics in a resonant bar of rock, Geophys. Res. Lett. 25 (1998) 1585–1588. doi:10.1029/98GL51231.
- [9] E.H. Field, P.A. Johnson, I.A. Beresnev, Y. Zeng, Nonlinear ground-motion amplification by sediments during the 1994 Northridge earthquake, Nature. 390 (1997) 599–602. doi:10.1038/37586.
- [10] R.A. Guyer, P.A. Johnson, The astonishing case of mesoscopic elastic nonlinearity, Phys. Today. 52 (1999) 30–35.
- [11] R.T. Beyer, The Parameter B/A, in: D.. Hamilton, M. F. and Blackstrock (Ed.), Nonlinear Acoust., 1997: p. 25.
- [12] B. Ward, A.C. Baker, V.F. Humphrey, Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound, J. Acoust. Soc. Am. 101 (1997) 143–154. doi:10.1121/1.417977.
- [13] E.L. Carstensen, D.R. Bacon, Biomedical Applications, in: D.. Hamilton, M. F. and Blackstrock (Ed.), Nonlinear Acoust., 1997: p. 421.
- [14] Y. Zheng, R.G. Maev, I.Y. Solodov, Nonlinear acoustic applications for material characterization: A review, Can. J. Phys. 77 (1999) 927–967. doi:10.1139/p99-059.
- [15] A.N. Norris, Finite Amplitude waves in Solids, in: M. F. Hamilton and D. T. Blackstock (Ed.), Nonlinear Acoust., Academic press San Diego, 1998: pp. 263–277.
- [16] V. Gusev, V. Tournat, B. Castagnede, Nonlinear Acoustic Phenomena in Micro-inhomogenous Media, in: Mater. Acoust. Handb., ISTE , 2009: pp. 431–471. doi:10.1002/9780470611609. ch17.
- [17] O. V. Rudenko, M. J. Crocker, Nonlinear Acoustics, in: Handb. Noise Vib. Control, John Wiley & Sons, Inc., 2007: pp. 159–168. doi:10.1002/9780470209707.ch10.
- [18] Y. Zheng, R.G. Maev, I.Y. Solodov, Review / Syth'ese Nonlinear acoustic applications for material characterization: A review, Can. J. Phys. 77 (2000) 927–967. doi:10.1139/p99-059.
- [19] K.H. Matlack, J.Y. Kim, L.J. Jacobs, J. Qu, Review of Second Harmonic Generation Measurement Techniques for Material State Determination in Metals, J. Nondestruct. Eval. 34 (2015). doi:10.1007/s10921-014-0273-5.
- [20] V.K. Chillara, C.J. Lissenden, Nonlinear guided waves in plates: A numerical perspective, Ultrasonics. 54 (2014) 1553–1558. doi:10.1016/j.ultras.2014.04.009.
- [21] M.A. Drewry, P.D. Wilcox, One-dimensional time-domain finite-element modelling of nonlinear wave propagation for non-destructive evaluation, NDT E Int. 61 (2014) 45–52. doi:10.1016/j.ndteint.2013.09.006.
- [22] N. Rauter, R. Lammering, Numerical simulation of elastic wave propagation in isotropic media considering material and geometrical nonlinearities, Smart Mater. Struct. 24 (2015) 45027. doi:10.1088/0964-1726/24/4/045027.
- [23] Y.-X. Xiang, W.-J. Zhu, M.-X. Deng, F.-Z. Xuan, Experimental and numerical studies of nonlinear ultrasonic responses on plastic deformation in weld joints, Chinese Phys. B. 25 (2016) 24303. doi:10.1088/1674-1056/25/2/024303.
- [24] F. Schubert, Numerical time-domain modeling of linear and nonlinear ultrasonic wave propagation using finite integration techniques--theory and applications., Ultrasonics. 42 (2004) 221–9. doi:10.1016/j.ultras.2004.01.013.
- [25] N. Matsuda, S. Biwa, A Finite-Difference Time-Domain Technique for Nonlinear Elastic Media and Its Application to Nonlinear Lamb Wave Propagation, Jpn. J. Appl. Phys. 51 (2012) 07GB14. doi:10.1143/JJAP.51.07GB14.
- [26] N. Matsuda, S. Biwa, Frequency dependence of secondharmonic generation in Lamb waves, J. Nondestruct. Eval. 33 (2014) 169–177. doi:10.1007/s10921-014-0227-y.
- [27] J. Virieux, P-SV wave propagation in heterogeneous media:Veloctiy-stress finite difference method*, 51 (1986).
- [28] J. Virieux, SH -wave propagation in heterogeneous media: Velocity-stress finite-difference method, GEO PHYSICS . 49 (1984) 1933–1942. doi:10.1190/1.1441605.
- [29] E.H. Saenger, N. Gold, S. A. Shapiro, Modeling the propagation of elastic waves using a modified finite-difference grid, Wave Motion. 31 (2000) 77–92. doi:10.1016/S0165-2125(99)00023-2.
- [30] H. Bao, J. Bielak, O. Ghattas, L.F. Kallivokas, D.R. O’Hallaron, J.R. Shewchuk, J. Xu, Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers, Comput. Methods Appl. Mech. Eng. 152 (1998) 85–102. doi:10.1016/S0045-7825(97)00183-7.
- [31] D. Michea, D. Komatitsch, Accelerating a three-dimensional finite-difference wave propagation code using GPU graphics cards, Geophys. J. Int. 182 (2010) 389–402. doi:10.1111/j.1365-246X.2010.04616.x.
- [32] P. Huthwaite, Accelerated finite element elastodynamic simulations using the GPU, J. Comput. Phys. 257 (2014) 687–707. doi:10.1016/j.jcp.2013.10.017.
- [33] P. Packo, T. Bielak, A.B. Spencer, T. Uhl, W.J. Staszewski, K. Worden, T. Barszcz, P. Russek, K. Wiatr, Numerical simulations of elastic wave propagation using graphical processing units—Comparative study of high-performance computing capabilities, Comput. Methods Appl. Mech. Eng. 290 (2015) 98–126. doi:10.1016/j.cma.2015.03.002.
- [34] C. Truesdell, W. Noll, The Non-Linear Field Theories of Mechanics/Die Nicht-Linearen Feldtheorien der Mechanik, Springer Science & Business Media, 2013.
- [35] J.L. Rose, Ultrasonic waves in solid media, Cambridge University press, 2004.
- [36] R.S. Mini, Wave Propagation Through Microstructural Features with Geometric Nonlinearity- Experimental and Numerical Investigations, Indian Institute of Technology Madras, 2016.
- [37] L.D. Landau, E.M. Lifshitz, A.M. Kosevich, L.P. Pitaevskiai, Theory of Elasticity, 3rd, (1986).
- [38] E.H. Saenger, T. Bohlen, Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid, Geophysics. 69 (2004) 583–591. doi:10.1190/1.1707078.
- [39] H. Igel, P. Mora, B. Riollet, Anisotropic wave propagation through finite difference grids, GEO PHYSICS . 60 (1995) 1203–1216. doi:10.1190/1.1443849.
- [40] V. Lisitsa, D. Vishnevskiy, Lebedev scheme for the numerical simulation of wave propagation in 3D anisotropic elasticity‡, Geophys. Prospect. 58 (2010) 619–635. doi:10.1111/j.1365-2478.2009.00862.x.
- [41] P. Moczo, J. Kristek, E. Bystricky, Efficiency and optimization of the 3-D finite-difference modeling of seismic ground motion, J. Comput. Acoust. 9 (2001) 593–609.
- [42] Y. Luo, G. Schuster, Parsimonuis staggered grid Finite-Differencing of the wave equation, Geophys. Res. Lett. 17 (1990) 155–158.
- [43] J. Zhang, T. Liu, Elastic wave modelling in 3D heterogeneous media: 3D grid method, Geophys. J. Int. 150 (2002) 780–799. doi:10.1046/j.1365-246X.2002.01743.x.
- [44] K.R. Kelly, R.W. Ward, S. Treitel, R.M. Alford, Synthetic Seismograms: A Finite Difference Approach, Geophysics. 41 (1976) 2–27. doi:10.1190/1.1440605.
- [45] NVIDIA , CUDA C Programming guide, (n.d.). http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.
- [46] A. Pandala, K. Balasubramaniam, M. Spies, Simulation of Ultrasonic Inspection of Complex Components Using a 3DFDTD -Approach, in: Proc. 19th WCNDT , 2016: pp. 3–10.
- [47] A. Pandala, S. Shivaprasad, C. V Krishnamurthy, K. Balasubramaniam, Modelling of Elastic Wave Scattering in Polycrystalline Materials, in: 8th Int. Symp. NDT Aerosp., 2016.
- [48] W.J.N. De Lima, M.F. Hamilton, Finite-amplitude waves in isotropic elastic plates, J. Sound Vib. 265 (2003) 819–839. doi:10.1016/S0022-460X(02)01260-9.
- [49] O. Holberg, Computational Aspects Of The Choice Of Operator And Sampling Interval For Numerical Differentiation In Large-Scale Simulation Of Wave Phenomena, Geophys. Prospect. 35 (1987) 629–655. doi:10.1111/j.1365-2478.1987.tb00841.x.
- [50] A. Hikata, B.B. Chick, C. Elbaum, Dislocation contribution to the second harmonic generation of ultrasonic waves, J. Appl. Phys. 36 (1965) 229–236. doi:10.1063/1.1713881.
- [51] CO MSO L, Introduction To CO MSO L Multiphysics, (2016). cdn.comsol.com/documentation/5.2.0.166/ IntroductionToCO MSOLMultiphysics.pdf.
- [52] S. Delrue, K. Van Den Abeele, Three-dimensional finite element simulation of closed delaminations in composite materials, Ultrasonics. 52 (2012) 315–324. doi:10.1016/j. ultras.2011.09.001.
- [53] J. Zhao, V.K. Chillara, B. Ren, H. Cho, J. Qiu, C.J. Lissenden, Second harmonic generation in composites: Theoretical and numerical analyses, J. Appl. Phys. 119 (2016) 64902. doi:10.1063/1.4941390.
- [54] J.S. Valluri, K. Balasubramaniam, R. V. Prakash, Creep damage characterization using non-linear ultrasonic techniques, Acta Mater. 58 (2010) 2079–2090. doi:10.1016/j. actamat.2009.11.050.
- [55] Y. Xiang, M. Deng, F.Z. Xuan, C.J. Liu, Effect of precipitate-dislocation interactions on generation of nonlinear Lamb waves in creep-damaged metallic alloys, J. Appl. Phys. 111 (2012). doi:10.1063/1.4720071.
- [56] R.N. Thurston, K. Brugger, Third-Order Elastic Constants and the Velocity of Small Amplitude Elastic Waves in Homogeneously Stressed Media, Phys. Rev. 135 (1964) AB3-AB3. doi:10.1103/PhysRev.135.AB3.2.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43bcfcb9-880b-4dbf-9b4c-ebe6ee6ca592