PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of ventilation regimes of the oblique wedge-shaped surface piercing hydrofoil during initial water entry process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The suction side of a surface piercing hydrofoil, as a section of a Surface Piercing Propeller (SPP), is usually exposed to three phases of flow consisting air, water, and vapour. Hence, ventilation and cavitation pattern of such section during the initial phase of water entry plays an essential role for the propeller’s operational curves. Accordingly, in the current paper a numerical simulation of a simple surface piercing hydrofoil in the form of an oblique wedge is conducted in three-phase environment by using the coupled URANS and VOF equations. The obtained results are validated against water entry experiments and super-cavitation tunnel test data. The resulting pressure curves and free surface profiles of the wedge water entry are presented for different velocity ratios ranging from 0.12 to 0.64. Nondimensional forces and efficiency relations are defined in order to present the wedge water entry characteristics. Congruent patterns are observed between the performance curves of the propeller and the wedge in different fully ventilated or partially cavitated operation modes. The transition trend from fully ventilated to partially cavitated operation of the surface piercing section of a SPP is studied and analyzed through wedge’s performance during the transitional period.
Rocznik
Tom
Strony
24--34
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
  • Amirkabir University of Technology 424 Hafez Ave., 3314 Tehran Islamic Republic of Iran
  • Amirkabir University of Technology 424 Hafez Ave., 3314 Tehran Islamic Republic of Iran
Bibliografia
  • 1. Brandt H.: Modellversuche mit Schiffspropellern an der Wasseroberfiache, Schiff und Hafen. 25(5), 1973, pp.415–422.
  • 2. Cox B.D.: Hydrofoil theory for vertical water entry, PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1971.
  • 3. Dinh N.N.: Some Experiments on a Supercavitating Plane Hydrofoil with Jet-Flap, J. Ship Research, SNAME,1968, pp. 207-219.
  • 4. Faltinsen O.M., Semenov Y.A.: Nonlinear problem of flatplate entry into an incompressible liquid. J. Fluid Mech. 611, 2008, pp. 151–173.
  • 5. Farsi M., Ghadimi P.: Finding the best combination of numerical schemes for 2D SPH simulation of wedge water entry for a wide range of dead-rise angles. Int. J Naval Archit. Ocean Eng. 6, 2014, pp. 638-651.
  • 6. Farsi M., Ghadimi P.: Effect of flat deck on catamaran water entry through smoothed particle hydrodynamics. Institution of Mechanical Engineering Part M, J. Engineering for the Maritime Environment, March, 2014, published online.
  • 7. Farsi M., Ghadimi P.: Simulation of 2D symmetry and asymmetry wedge water entry by smoothed particle hydrodynamics method. J. Brazilian Society of Mech. Sci. Eng. 37(3), 2015, pp. 821-835.
  • 8. Feizi Chekab M.A., Ghadimi P., Farsi M.: Investigation of three-dimensionality effects on aspect ratio on water impact of 3D objects using smoothed particle hydrodynamics method. J. Brazilian Soc. Mech. Sci. Eng, 2015,published online: June 2015. DOI: 10.1007/s40430-015-0367-8.
  • 9. Furuya O.: A performance-prediction theory for partially submerged ventilated propellers. J. Fluid Mechanics, 151, 1985, pp. 311-335.
  • 10. Ghadimi P., Saadatkhah A., Dashtimanesh A.: Analytical solution of wedge water entry by using Schwartz–Christoffel conformal mapping. Int. J. Modeling, Simulation and Scientific Computing. 2(3), 2011, pp. 337-354.
  • 11. Ghadimi P., Dashtimanesh A., Djeddi S.R.: Study of water entry of circular cylinder by using analytical and numerical solutions. J. Brazilian Society of Mech. Sci. Eng. 37(3),,2012, pp. 821-835
  • 12. Ghadimi P., Feizi Chekab MA., Dashtimanesh A.: A numerical investigation of the water impact of an arbitrary bow section. ISH J. Hydraul. Eng. 19(3), 2013, pp. 186-195.
  • 13. Ghadimi P., Feizi Chekab MA., Dashtimanesh A.: Numerical simulation of water entry of different arbitrary bow sections. J Naval Archit. Marine Eng. 11 (2), 2014, pp. 117-129.
  • 14. Hadler J.B., Hecker R.: Performance of Partially Submerged Propellers, Proc. 7th ONR Symposium on Naval Hydrodynamics, Rome, Italy. 1968.
  • 15. Hecker R.: Experimental Performance of a Partially Submerged Propeller in Inclined Flow, SNAME Spring Meeting, Lake Buena Vista, Florida, USA, 1973.
  • 16. Javanmardi N., Ghadimi P.: Hydroelastic analysis of surface piercing hydrofoil during initial water entry phase, J. Scientia Iranica, accepted to be published, 2017.
  • 17. Javanmardi N., Ghadimi P.: Hydroelastic analysis of a semi submerged propeller using simultaneous solution of Reynolds averaged Navier–Stokes equations and linear elasticity equations, Journal of Engineering for Maritime Environment,? 2017.
  • 18. Ji B., Luo X.W., Wang X., Peng X.X., Wu Y.L., Xu H.Y.: Unsteady numerical simulation of cavitating turbulent flow around a highly skewed model marine propeller. J. Fluids Eng.-Trans, ASME, 133 (1), 011102, 2011.
  • 19. Khabkkhpasheva TI, Kim Y, Korobkin AA.: Generalized Wagner Model of Water Impact by Numerical Conformal Mapping. App. Ocean Res. 44, 2014, pp. 29-38.
  • 20. Kruppa CFL.: Testing of Partially Submerged Propellers, Proc. 13th ITTC Report on Cavitation. Berlin & Hamburg, Germany, 1972.
  • 21. Kudo T., Ukon Y.: Calculation of super cavitating propeller performance using a vortex-lattice method, in: Second International Symposium on Cavitation, Tokyo, Japan, 1994.
  • 22. Kudo T., Kinnas S.: Application of vortex/source lattice method on supercavitating propellers, in 24th American Towing Tank Conference, College Station, TX, USA, 1995.
  • 23. Maki K.J., Lee D., Troesch A.W., Vlahopoulos N.: Hydroelastic impact of a wedge-shaped body. Ocean Engineering 38, 2011, pp. 621–629.
  • 24. Mejri I., Bakir F., Rey R., Belamri T.: Comparison of computational results obtained from a homogeneous cavitation model with experimental investigations of three inducers, J. Fluids Eng.-Trans. ASME, 128, 2006, pp.1308–1323
  • 25. Olofsson N.: A Contribution on the Performance of Partially Submerged Propellers, Proc. FAST ‘93, 2nd Intl. Conf. on Fast Sea Transportation. Yokohama, Japan, 1, 1993, pp. 765-776.
  • 26. Olofsson N.: Force and Flow Characteristics of a Partially Submerged Propeller, PhD Thesis, Department of Naval Architecture and Ocean Engineering, Chalmers Univ., Gotenborg, Sweden,1996.
  • 27. Piro D.J., Maki K.J.: Hydroelastic Wedge Entry and Exit . 11th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011.
  • 28. Piro D.J., Maki K.J.: Hydroelastic analysis of bodies that enter and exit water. Journal of Fluids and Structures 37, 2013, pp. 134–150.
  • 29. Panciroli, R.: Water entry of flexible wedges: Some issues on the FSI phenomena. App. Ocean Res. 39, 2013, pp.72-74.
  • 30. Schnerr G.H., Sauer J.: Physical and numerical modeling of unsteady cavitation dynamics, in: Proceeding of 4th International Conference on Multiphase Flow, New Orleans, USA, 2001.
  • 31. Shademani, R., Ghadimi P.: Estimation of water entry forces, spray parameters and secondary impact of fixed width wedges at extreme angles using finite element based finite volume and volume of fluid methods. J. Brodogradnja 67(2), 2016, pp. 101-124.
  • 32. Shademani, R., P. Ghadimi.: Asymmetric Water Entry of Twin Wedges with Different Deadrises, Heel Angles, and Wedge Separations using Finite Element Based Finite Volume Method and VOF. Journal of Applied Fluid Mechanics, 10(1), 2017, pp. 353-368.
  • 33. Shademani R., Ghadimi P.: Numerical assessment of turbulence effect on forces, spray parameters, and secondary impact in wedge water entry problem using k-ε method, Scientia Iranica- B, 24(1), 2017, pp. 223-236.
  • 34. Singhal A.K., Athavale M.M., Li H., Jiang Y.: Mathematical basis and validation of the full cavitation model, J. Fluid Engineering, 124, 2002, pp. 617-624.
  • 35. Vinayan V., Kinnas S.A.: A numerical nonlinear analysis of two-dimensional ventilating entry of surface-piercing hydrofoils with effects of gravity, J. Fluid Mech. 658,2010, pp. 383–408 .
  • 36. Vinayan V. A Boundary Element Method for the Strongly Nonlinear Analysis of Ventilating Water-entry and Wavebody Interaction Problems. PhD thesis, Ocean Engineering Group, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX, USA, 2009.
  • 37. Wang D.P.: Water entry and exit of a fully ventilated foil, J. Ship Res. 21 (1), 1977, pp. 44–68.
  • 38. Wang D.P.: Oblique water entry and exit of a fully ventilated foil, J. Ship Res, 23, 1979, pp. 43–54.
  • 39. Wang G., Zhu X., Sheng Z.: Hydrodynamic forces of a three-dimensional fully ventilated foil entering water. J. Hydrodynamics, 5(2), 1990.
  • 40. Wu T.Y.: A Free-Streamline Theory for Two-Dimensional Fully Cavitated Hydrofoils, Mathematical Physics, 35, 1956, pp. 236–265.
  • 41. Yim B.: An application of linearized theory to water entry and water exit problems. Part 2 with ventilation, Rep. 3171. NSRDC, Washington, DC, USA. 1969.
  • 42. Yim B.: Linear theory on water entry and exit problems of a ventilating thin wedge, J. Ship Res. 18 (1), 1974, pp. 1–11.
  • 43. Young Y.L.: Numerical modeling of supercavitating and surface-piercing propellers, PhD thesis, Ocean Engineering Group, Department of Civil ?, University of Texas at Austin, Austin, TX,USA, 2002.
  • 44. Young Y.L., Kinnas S.A.: Analysis of supercavitating and surface-piercing propeller flows via BEM, J. Computational Mechanics, 32, 2003, pp. 269-280.
  • 45. Young Y.L., Savander B.R.: Numerical analysis of largescale surface-piercing propellers. J. Ocean Engineering, 38, 2011, pp. 1368-1381.
  • 46. Zwart P., Gerber A.G., Belamri T.: A Two-Phase Model for Predicting Cavitation Dynamics, ICMF International Conference on Multiphase Flow, Yokohama, Japan, 2004.
  • 47. Plik : PMR-2016-00084 : 43230 zn. norm. [24 str], stan 2018-01-16, kor. ang. epw
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43bc0ee9-ab82-421d-80cd-e8d0329c9e53
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.