Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wieloczynnikowe podejście do analizy jakości energii w górnictwie podziemnym
Języki publikacji
Abstrakty
This research presents the development of a multifactorial static multiplicative model for analysing power quality in underground mining power systems. The objective is to synthesize a generalized indicator of power quality by integrating key parameters such as voltage dips and sags, frequency deviations, harmonic distortion, and other critical indicators that influence the energy efficiency and reliability of the electrical network. The proposed model structure was developed using the synthesis method, with its parameters identified through a maladaptive approach based on the least squares method. To validate the model's accuracy, mathematical statistics techniques were employed. As a result, mathematical relationships were derived to evaluate a generalized power quality index using data on voltage drop, frequency deviation, and harmonic distortion. The model, characterized as static and multiplicative, requires full-spectrum quality data for parameter identification via a non-adaptive approach. Comparative accuracy analysis between a single-factor model and the proposed three-factor model revealed a correlation coefficient of 0.951 for the former and 0.923 for the latter. While the multifactor model demonstrates a 2.94% reduction in statistical accuracy, both models qualify as having "very high" reliability according to the Chaddock scale. This confirms the practical applicability of the multifactor approach in real-world mining energy systems. The scientific novelty lies in the improved multifactor model structure that synthesizes multiple quality indicators into a unified framework. Its practical value is evident in applications for managing power flow within industrial microgrids in underground mines, particularly those integrating local power generation sources.
Niniejsze badania przedstawiają opracowanie wieloczynnikowego statycznego modelu multiplikatywnego do analizy jakości energii elektrycznej w podziemnych systemach energetycznych górnictwa. Celem jest synteza uogólnionego wskaźnika jakości energii elektrycznej poprzez integrację kluczowych parametrów, takich jak spadki i zapady napięcia, odchylenia częstotliwości, zniekształcenia harmoniczne i inne krytyczne wskaźniki wpływające na efektywność energetyczną i niezawodność sieci elektrycznej. Proponowaną strukturę modelu opracowano z wykorzystaniem metody syntezy, a jej parametry zidentyfikowano za pomocą podejścia maladaptacyjnego opartego na metodzie najmniejszych kwadratów. Aby zweryfikować dokładność modelu, wykorzystano techniki statystyki matematycznej. W rezultacie wyprowadzono zależności matematyczne do oceny uogólnionego wskaźnika jakości energii elektrycznej, wykorzystując dane dotyczące spadku napięcia, odchylenia częstotliwości i zniekształceń harmonicznych. Model, scharakteryzowany jako statyczny i multiplikatywny, wymaga pełnego spektrum danych jakościowych do identyfikacji parametrów za pomocą podejścia nieadaptacyjnego. Porównawcza analiza dokładności między modelem jednoczynnikowym a proponowanym modelem trójczynnikowym wykazała współczynnik korelacji wynoszący 0,951 dla pierwszego i 0,923 dla drugiego. Chociaż model wieloczynnikowy wykazuje spadek dokładności statystycznej o 2,94%, oba modele charakteryzują się „bardzo wysoką” niezawodnością według skali Chaddocka. Potwierdza to praktyczną przydatność podejścia wieloczynnikowego w rzeczywistych systemach energetycznych górnictwa. Nowość naukowa tkwi w ulepszonej strukturze modelu wieloczynnikowego, która syntetyzuje wiele wskaźników jakości w ujednolicone ramy. Jego praktyczna wartość jest widoczna w zastosowaniach do zarządzania przepływem energii w przemysłowych mikrosieciach w kopalniach podziemnych, zwłaszcza tych integrujących lokalne źródła energii.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
133--145
Opis fizyczny
Bibliogr. 48 poz., tab., wykr.
Twórcy
autor
- Department of Electrical Engineering, Faculty of Electrical Engineering, Kryvyi Rih National University, Vitaly Matusevich 11, Kryvyi Rih, Ukraine
autor
- Department of Electrical Engineering, Faculty of Electrical Engineering, Kryvyi Rih National University, Vitaly Matusevich 11, Kryvyi Rih, Ukraine
autor
- Department of Electrical Engineering, Faculty of Electrical Engineering, Kryvyi Rih National University, Vitaly Matusevich 11, Kryvyi Rih, Ukraine
autor
- Department of Electrical Engineering, Faculty of Electrical Engineering, Kryvyi Rih National University, Vitaly Matusevich 11, Kryvyi Rih, Ukraine
autor
- Department of Electrical Engineering, Faculty of Electrical Engineering, Kryvyi Rih National University, Vitaly Matusevich 11, Kryvyi Rih, Ukraine
autor
- Department of Business and Enterprise Management, Faculty of Management, AGH University of Krakow, Mickiewicza 30, PL-30059 Krakow, Poland
Bibliografia
- 1. Stace, R. (2022). Iron ore extraction techniques. Iron Ore, 249–268. https://doi.org/10.1016/b978-0-12-820226-5.00025-2
- 2. Natalia, H., Dychkovskyi, R., Polaski, J., Buketov, V., Polyanska, A., Kononenko, M., Khomenko, O., Kosenko, A., & Smoliski, A. (2025). Sustainable Management of Iron Ore Extraction Processes using Methods of Borehole Hydro-Technology. International Journal of Mining and Mineral Engineering, 16(1). https://doi.org/10.1504/ijmme.2025.10070190
- 3. Stupnik, M.I., Fedko, M.B., Pysmenyi, S.V., Kolosov, V.O., Kurnosov, S.A., & Malanchuk, Z.R. (2018). Problems of disclosure and preparation of ore deposits on deep horizons of mines of kryvbas. Bulletin of Kryvyi Rih National University, 47, 3-8. https://doi.org/10.31721/2306-5451-2018-1-47-3-8
- 4. Kosenko, A., Khomenko, O., Kononenko, M., Myronova, I., & Pazynich, Y. (2024). Raises advance using borehole hydraulic technology. E3S Web of Conferences, 567, 01008. https://doi.org/10.1051/e3sconf/202456701008
- 5. Khomenko, O., Rudakov, D., Lkhagva, T., Sala, D., Buketov, V., & Dychkovskyi, R. (2023). Managing the Horizon-oriented In-Situ Leaching for the Uranium Deposits of Mongolia. Rudarsko-Geološko-Naftni Zbornik, 38(5), 49–60. https://doi.org/10.17794/rgn.2023.5.5
- 6. Beshta, O.S., Fedoreiko, V.S., Palchyk, A.O., & Burega, N.V. (2015) Autonomous power supply of the objects based on biosolid oxide fuel systems. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 67–73.
- 7. Vladyko, O., Maltsev, D., Gliwiński, Ł., Dychkovskyi, R., Stecuła, K., & Dyczko, A. (2025). Enhancing Mining Enterprise Energy Resource Extraction Efficiency Through Technology Synthesis and Performance Indicator Development. Energies, 18(7), 1641. https://doi.org/10.3390/en18071641
- 8. Polyanska, A., Pazynich, Y., Petinova, O., Nesterova, O., Mykytiuk, N., & Bodnar, G. (2024). Formation of a Culture of Frugal Energy Consumption in the Context of Social Security. The Journal of the International Committee for the History of Technology, 29(2), 60–87. https://doi.org/10.11590/icon.2024.2.03
- 9. Zapukhliak, I., Zaiachuk, Y., Polyanska, A., & Kinash, I. (2019). Applying fuzzy logic to assessment of enterprise readiness for changes. Management Science Letters, 2277–2290. https://doi.org/10.5267/j.msl.2019.7.026
- 10. Beshta, O.S., Balakhontsev, O.V., Khudolii, S.S., & Fedoreiko, V.S. (2014). Dependence of electric drive's thermal state on its operation mode. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 67–72
- 11. Myronova, I., Kovrov, O., Dudek, M., Voronkova, Y., & Kononenko, M. (2025). Environmental assessment of the impact of iron ore mine emissions on biological indicators of winter wheat. IOP Conference Series: Earth and Environmental Science, 1457(1), 012004. https://doi.org/10.1088/1755-1315/1457/1/012004
- 12. Ostrowska, A., Michalec, Ł., Skarupski, M., Jasiński, M., Sikorski, T., Kostyła, P., Lis, R., Mudrak, G., & Rodziewicz, T. (2022). Power Quality Assessment in a Real Microgrid-Statistical Assessment of Different Long-Term Working Conditions. Energies, 15, 8089. https://doi.org/10.3390/en15218089
- 13. Sinchuk, I.O. (2019). Methodological bases for assessing the electrical efficiency of iron ore enterprises: a monograph. Shcherbatykh, 284 p.
- 14. Igogo, T., Awuah-Offei, K., Newman, A., Lowder, T., Engel-Cox, J. (2021). Integrating renewable energy into mining operations: Opportunities, challenges, and enabling approaches. Applied Energy, 300, 117375. https://doi.org/10.1016/j.apenergy.2021.117375
- 15. Sinchuk, I., Mykhailenko, O., Kupin, A., Ilchenko, O., Budnikov, K., & Baranovskyi, V. (2022). Developing the algorithm for the smart control system of distributed power generation of water drainage complexes at iron ore underground mines. 2022 IEEE 8th International Conference on Energy Smart Systems (ESS), Kyiv, Ukraine, 2022, 116–122. https://doi.org/10.1109/ESS57819.2022.9969263
- 16. Marsden, O., & Marsden, J.O. (2021). Potential Pathways for Mining Operations to Transition to Renewable Energy – a Case Study. Mining, Metallurgy & Exploration, 38, 1689–1699. https://doi.org/10.1007/s42461-021-00440-9
- 17. Issa, M., Ilinca, A., Rousse, D.R., Boulon, L., & Groleau, P. (2023). Renewable Energy and Decarbonization in the Canadian Mining Industry: Opportunities and Challenges. Energies, 16(19), 6967. https://doi.org/10.3390/en16196967
- 18. Morán, L., Sbarbaro-Hofer, D.G., Ortega, F., & Espinoza, J.R. (2019). Electrical energy consumption characterization of open-pit mining and mineral processing operations towards the use of renewable energy sources. 2019 IEEE Industry Applications Society Annual Meeting, Baltimore, MD, USA, 2019, 1–6, https://doi.org/10.1109/IAS.2019.8911978
- 19. Ghahramani, M., Habibi, D., Ghamari, S.M., & Aziz, A. (2024). Addressing Uncertainty in Renewable Energy Integration for Western Australia’s Mining Sector: A Robust Optimization Approach. Energies, 17(22), 5679. https://doi.org/10.3390/en17225679
- 20. Sinchuk, O.M., Mykhailenko, O.Yu., Kobeliatskyi, D.V., & Strzelecki (2003) R. Simulation of power consumption control of receivers at underground iron ore mining enterprises. Applied Aspects of Information Technology, 4, 404–417. https://doi.org/10.15276/aait.06.2023.27
- 21. Tan, R. H. G., & Ramachandaramurthy, V. K. (2015). A Comprehensive Modeling and Simulation of Power Quality Disturbances Using MATLAB/SIMULINK. In Power Quality Issues in Distributed Generation. IntechOpen. https://doi.org/10.5772/61209
- 22. Hussein, A., & Hawas, M. (2019). Power quality analysis based on simulation and MATLAB/Simulink. Indonesian Journal of Electrical Engineering and Computer Science, 16(3), 1144–1153. http://doi.org/10.11591/ijeecs.v16.i3.pp1144-1153
- 23. Zhang, J., Sheng, T., Gu, P., Yu, M., Wu, H., Sun, J., & Bao, J. (2024) Comprehensive Power Quality Assessment Based on a Data-Driven Determinant-Valued Extension Hierarchical Analysis Approach. Energies, 17, 3141. https://doi.org/10.3390/en17133141
- 24. Bajaj, M., Singh, A.K., Alowaidi, M.A., Sharma, N.K., Sharma, S.K., & Mishra, S. (2020). Power Quality Assessment of Distorted Distribution Networks Incorporating Renewable Distributed Generation Systems Based on the Analytic Hierarchy Process. IEEE Access, 8, 145713–145737. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9159570
- 25. Yin, J., Du, X., Yuan, H., Ji, M., Yang, X., Tian, S., Wang, Q., & Liang, Y. (2021). TOPSIS Power Quality Comprehensive Assessment Based on A Combination Weighting Method. 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2), Taiyuan, China, 2021, 1303–1307. https://doi.org/10.1109/EI252483.2021.9713201
- 26. Shi, H., Li, Y., Jiang, Z., & Zhang J. (2021). Comprehensive power quality evaluation method of microgrid with dynamic weighting based on CRITIC. Measurement and Control, 54(5-6), 1097–1104. https://doi.org/10.1177/00202940211016092
- 27. Yang, F., Shen, Y., Cui, X., Wu, J., Yin, Z., Wang, Y., Wu, Y. & Dong, Y. (2018). Voltage Sag Severity Assessment Based on Multiobjective Decision Analytic Hierarchy Process. 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 2018. 1–6. https://doi.org/10.1109/EI2.2018.8582402
- 28. Shen, C., & Hu, L. (2020). Power quality comprehensive evaluation method based on fuzzy mathematics and cloud theory. Journal of Physics: Conference Series. 1684 012136. https://doi.org/10.1088/1742-6596/1684/1/012136
- 29. Ding, H., Liu, P., Chang, X., & Zhang, B. (2023). A Novel Power Quality Comprehensive Estimation Model Based on Multi-Factor Variance Analysis for Distribution Network with DG. Processes, 11, 2385. https://doi.org/10.3390/pr11082385
- 30. Sala, D., Pavlov, K., Pavlova, О., Dychkovskyi, R., Ruskykh, V., & Pysanko, S. (2024). Determining the Level of Efficiency of Gas Distribution Enterprises in the Western Region of Ukraine. Inżynieria Mineralna, 2(2 (52)). https://doi.org/10.29227/im-2023-02-64
- 31. Shi, H., Su, G., Pan, J., Feng, K., & Zhou, J. (2022). A novel microgrid power quality assessment model based on multivariate Gaussian. IET Power Electron, 16, 145–156. https://doi.org/10.1049/pel2.12370
- 32. Liu, M., Chen, Y., Zhang, Z., & Deng, S. (2023). Classification of Power Quality Disturbance Using Segmented and Modified S-Transform and DCNN-MSVM Hybrid Model. IEEE Access, 11, 890–899 https://doi.org/10.1109/ACCESS.2022.3233767
- 33. Wang, M., Deng, Z., Zhang Y., & Zhu, Z. (2023). An Automatic Identification Framework for Complex Power Quality Disturbances Based on Ensemble CNN. IEEE Access, 11, 56550–56560. https://doi.org/10.1109/ACCESS.2023.3273294
- 34. Khetarpal, P., & Tripathi, M.M. (2023). Classification of Power Quality Disturbances Using Semi-supervised Deep Belief Networks. Journal of Electrical Engineering & Technology. 18, 3191–3200. https://doi.org/10.1007/s42835-023-01423-0
- 35. Zhou, L., Gu, S., Liu, Y., & Zhu, C. (2024). A novel recognition method for complex power quality disturbances based on Markov transition field and improved densely connected network. Frontiers in Energy Research, 12, 1328994. https://doi.org/10.3389/fenrg.2024.1328994
- 36. Liao, X., Chen, C., Wang, Y., Cui1, M., & Liu C. (2020). Identification of Power Quality Disturbances Based on Sample Entropy and Weighted Optimization Random Forest. Journal of Physics: Conference Series, 1486, 062018. https://doi.org/10.1088/1742-6596/1486/6/062018
- 37. IEEE. (1996). IEEE Recommended Practice for Monitoring Electric Power Quality. IEEE Power & Energy Society. https://doi.org/10.1109/ieeestd.1995.79050
- 38. Vladyko, O., Maltsev, D., Sala, D., Cichoń, D., Buketov, V., & Dychkovskyi, R. (2022). Simulation of leaching processes of polymetallic ores using the similarity theorem. Rudarsko-Geološko-Naftni Zbornik, 37(5), 169–180. https://doi.org/10.17794/rgn.2022.5.14
- 39. Lidong Zhan, & Bollen, M. H. J. (2000). Characteristic of voltage dips (sags) in power systems. IEEE Transactions on Power Delivery, 15(2), 827–832. https://doi.org/10.1109/61.853026
- 40. Seheda, M. S., Beshta, O. S., Gogolyuk, P. F., Blyznak, Yu. V., Dychkovskyi, R. D., & Smoliński, A. (2024). Mathematical model for the management of the wave processes in three-winding transformers with consideration of the main magnetic flux in mining industry. Journal of Sustainable Mining, 23(1), 20–39. https://doi.org/10.46873/2300-3960.1402
- 41. Susanto, J., Shahnia, F., Sharafi, D., & Kwek, L. (2019). Estimating a Power System’s Load Relief Factor Using the High-Resolution Data of Fault Recorders. 2019 9th International Conference on Power and Energy Systems (ICPES), 1–5. https://doi.org/10.1109/icpes47639.2019.9105658
- 42. Mohan, N. (2003). Teaching utility applications of power electronics in the first course on power systems. 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491), 130–132. https://doi.org/10.1109/pes.2003.1267151
- 43. Watson, N., & Arrillaga, J. (2003). Power Systems Electromagnetic Transients Simulation. Institution of Engineering and Technology. https://doi.org/10.1049/pbpo039e
- 44. Wang, Z., Bu, S., Wen, J., & Huang, C. (2025). A comprehensive review on uncertainty modeling methods in modern power systems. International Journal of Electrical Power & Energy Systems, 166, 110534. https://doi.org/10.1016/j.ijepes.2025.110534
- 45. Kolb, A., Pazynich, Y., Mirek, A., & Petinova, O. (2020). Influence of voltage reserve on the parameters of parallel power active compensators in mining. E3S Web of Conferences, 201, 01024. https://doi.org/10.1051/e3sconf/202020101024
- 46. Nikolsky, V., Dychkovskyi, R., Lobodenko, A., Ivanova, H., Cabana, E.C., & Shavarskyi, Ja. (2022). Thermodynamics of the developing contact heating of a process liquid. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 48-53. https://doi.org/10.33271/nvngu/2022-2/048
- 47. Pazynich, Y., Kolb, A., Korcyl, A., Buketov, V., & Petinova, O. (2024). Mathematical model and characteristics of dynamic modes for managing the asynchronous motors at voltage asymmetry. Polityka Energetyczna – Energy Policy Journal, 27(4), 39–58. https://doi.org/10.33223/epj/191779
- 48. Guo, K., Li, X., Du, H., Mao, F., Ni, C., Chen, Q., Xu, Y., & Huang, Z. (2023). Wavelet Vegetation Index to Improve the Inversion Accuracy of Leaf V25cmax of Bamboo Forests. Remote Sensing, 15(9), 2362. https://doi.org/10.3390/rs15092362
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43b6fb46-1fb6-4bea-969c-524efe1d3d9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.