PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development and characterization of graphene-reinforced Inconel 825 composite alloy for high temperature applications

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, a composite alloy consisting of Inconel 825, tungsten carbide (WC), cobalt (Co), and graphene (Gr) is developed and characterized. It is made by layer-by-layer sintering and spark plasma sintering processes at temperatures between 950 and 1,050°C and pressures between 40 and 50 MPa. The four different compositions that were made were 94.85 wt% Inconel–4.5 wt% WC–0.5 wt% Co–0.15 wt% Gr, 45 wt% Inconel–10 wt% WC–33 wt% Co–12 wt% Gr, 33 wt% Inconel–10 wt% WC–45 wt% Co–12 wt% Gr, and 90 wt% Inconel–4 wt% WC–5 wt% Co–1 wt% Gr. Detailed surface morphology, chemical analysis, and mechanical property assessments were performed on the resultant specimens. Strong interfacial bonding and low porosity were confirmed by the microstructural investigation, which showed dense composites with relative densities ranging from 96.5 to 97.8%. Specimens with higher Co and WC content had the highest hardness values, measuring 373.33 ± 3.5 HV (specimen C) and 362.75 ± 3.2 HV (specimen A). Superior strength was shown in tensile tests; specimen D (90 wt% Inconel) achieved 763.386 MPa at ambient temperature and dropped to 662.34 MPa at 450°C. This was mainly because of compositional changes like carbon oxidation and the development of Ni3 precipitate intermetallic phases. A decrease in tungsten carbide stability at higher temperatures was also verified by the study. Mechanical performance was further impacted by elemental diffusion and oxidation effects that were discovered by EDAX analysis of shattered specimens. These results show that Inconel 825 composites’ high-temperature mechanical performance and thermal stability can be considerably improved by an optimized reinforcing content, which qualifies them for use in high-temperature and aerospace applications.
Wydawca
Rocznik
Strony
63--77
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Aeronautical Engineering, Mahendra Engineering College Namakkal, India
  • Aeronautical Engineering, Mahendra Engineering College Namakkal, India
Bibliografia
  • [1] Ozgun, O., Aslantas, K., Ercetin, A., Powder metallurgy Mg-Sn alloys: Production and characterization, Sci. Iran., 2020, 27(3): 1255–1265. doi:10.24200/sci.2019.50212.1578
  • [2] Akkoyun, F., Cevik, Z.A., Ozsoy, K., Ercetin, A., Arpaci, I., Image processing approach to investigate the correlation between machining parameters and burr formation in micro-milling processes of selective-laser-melted AISI 316L, Micromachines, 2023, 14(7): 1376. doi:10.3390/mi14071376
  • [3] El-Eskandarany, M.S., Al-Hazza, A., Al-Hajji, L.A., Mechanically assisted Solid-State mixing and Spark plasma sintering for fabrication of bulk nanocomposite (WC/7(10Co/4cr))-Based ZrO2 systems, J. Mater. Eng. Perform., 2018, 26(4): 1540–1550. doi:10.1007/s11665-017-2580-3
  • [4] Munir, Z.A., Quach, D.V., Ohyanagi, M., Electric current activation of sintering: a review of the pulsed electric current sintering process, J. Am. Ceram. Soc., 2011, 94(1): 1–19
  • [5] Acchar, W., Camara, C.R.F.D., Cairo, C.A.A., Filgueira, M., Mechanical performance of alumina reinforced with NbC, TiC and WC, Mater. Res., 2012,15: 821–824
  • [6] Ercetin, A., Özgün, Ö., Aslantaş, K., Der, O., Yalçın, B., Şimşir, E., et al., Microstructural and mechanical behavior investigations of NB-Reinforced MG–SN–AL–ZN–MN matrix magnesium composites, Metals, 2023, 13(6): 1097. doi:10.3390/met13061097
  • [7] Ogunbiyi, O., Jamiru, T., Sadiku, R., Adesina, O., Olajide, J.L., Beneke, L., Optimization of spark plasma sintering parameters of inconel 738LC alloy using response surface methodology (RSM), Int. J. Lightweight Mater. Manuf., 2020, 3(2): 177–188. doi:10.1016/j.ijlmm.2019.10.002
  • [8] Pakseresht, A., Javadi, A., Bahrami, M., Khodabakhshi, F., Simchi, A., Spark plasma sintering of a multilayer thermal barrier coating on Inconel 738 superalloy: Microstructural development and hot corrosion behavior, Ceram. Int., 2016, 42(2): 2770–2779. doi:10.1016/j.ceramint.2015.11.008
  • [9] Yan, S., Wang, Y., Wang, Q., Zhang, C., Chen, D., Cui, G., Enhancing mechanical properties of the Spark plasma sintered Inconel 718 alloy by controlling the Nano-Scale precipitations, Materials, 2019, 12(20): 3336. doi:10.3390/ma12203336
  • [10] Rutkowski, P., Huebner, J., Graboś, A., Kata, D., Pasiut, K., Handke, B., et al., Thermal properties of spark plasma sintered Inconel 625 modified by titanium zirconium mixed carbide, J. Therm. Anal. Calorim., 2023, 148(15): 7633–7652. doi:10.1007/s10973-023-12259-1
  • [11] Zhou, S., Xu, T., Hu, C., Wu, H., Liu, H., Ma, X., A comparative study of tungsten carbide and carbon nanotubes reinforced Inconel 625 composite coatings fabricated by laser cladding, Opt. Laser Technol., 2021, 140: 106967. doi:10.1016/j.optlastec.2021.106967
  • [12] Graboś, A., Huebner, J., Rutkowski, P., Zhang, S., Kuo, Y., Kata, D., et al., Microstructure and hardness of spark plasma sintered inconel 625-NBC composites for High-Temperature applications, Materials, 2021, 14(16): 4606. doi:10.3390/ma14164606
  • [13] Murakami, T., Korenaga, A., Ohana, T., Microstructure, mechanical properties, oxidation behaviors, and cutting performance of TiC0·5N0.5-X (X: W, Mo) cermet specimens prepared by spark plasma sintering, Ceram. Int., 2021, 47(2): 1986–1999. doi:10.1016/j.ceramint.2020.09.030
  • [14] Zhang, Z., Han, B., Huang, J., Han, Y., Zhou, Y., Kakegawa, K., et al., Mechanical behavior of cryomilledni superalloy by spark plasma sintering, Metall. Mater. Trans. A, 2009, 40(9): 2023–2029. doi:10.1007/s11661-009-9914-1
  • [15] Oglezneva, S.A., Kachenyuk, M.N., Smetkin, A.A., Savich, V.V., Functional gradient heat-resistant materials manufactured by spark plasma sintering, Mater. Sci. Forum, 2021, 1037: 464–472. doi:10.4028/www.scientific.net/msf.1037.464
  • [16] Diouf, S., Molinari, A., Densification mechanisms in spark plasma sintering: Effect of particle size and pressure, Powder Technol., 2012, 221: 220–227. doi:10.1016/j.powtec.2012.01.005
  • [17] Sharma, D., Kumar, V., Singh, S., Parametric study of the spark plasma sintering process on the mechanical properties of multi-layer graphene reinforced Ti6Al4V nanocomposites, Trans. Indian Inst. Met., 2023, 76(4): 1015–1025. doi:10.1007/s12666-022-02811-2
  • [18] Shongwe, M.B., Diouf, S., Durowoju, M.O., Olubambi, P.A., Effect of sintering temperature on the microstructure and mechanical properties of Fe–30% Ni alloys produced by spark plasma sintering, J. Alloy. Compd., 2015, 649: 824–832. doi:10.1016/j.jallcom.2015.07.223
  • [19] Li, X., Yang, C., Chen, W., Qu, S., Li, Y., Microstructure and mechanical properties of SPSed (Spark Plasma Sintered) Ti66Nb13Cu8Ni6.8Al6.2 bulk alloys with and without WC addition, Mater. Trans., 2009, 50(7): 1720–1724. doi:10.2320/matertrans.mf200924
  • [20] Sunil, B.R., Ganapathy, C., Kumar, T.S., Chakkingal, U., Processing and mechanical behavior of lamellar structured degradable magnesium–hydroxyapatite implants, J. Mech. Behav. Biomed. Mater., 2014, 40: 178–189. doi:10.1016/j.jmbbm.2014.08.016
  • [21] Yuan, X., Qiu, H., Zeng, F., Luo, W., Li, H., Wang, X., et al., Microstructural evolution and mechanical properties of Inconel 625 superalloy fabricated by pulsed microplasma rapid additive manufacturing, J. Manuf. Process., 2022, 77: 63–74. doi:10.1016/j.jmapro.2022.03.008
  • [22] Ogunbiyi, O., Jamiru, T., Sadiku, R., Adesina, O., Adesina, O.S., Obadele, B.A., Spark plasma sintering of graphene-reinforced Inconel 738LC alloy: wear and corrosion performance, Met. Mater. Int., 2022, 28(3): 695–709. doi:10.1007/s12540-020-00871-x
  • [23] Bhattacharya, R., Annasamy, M., Cizek, P., Kamaraj, M., Muralikrishna, G.M., Hodgson, P., et al., Evolution of phase constitution with mechanical alloying and spark plasma sintering of nanocrystalline AlxCoCrFeNi (x  =  0, 0.3, 0.6, 1 mol) high-entropy alloys, J. Mater. Res., 2022, 37: 959–975. doi:10.1557/s43578-021-00483-0
  • [24] Narayana, P., Kim, S., Hong, J., Reddy, N., Yeom, J., Tensile properties of a newly developed high-temperature titanium alloy at room temperature and 650°C, Mater. Sci. Eng. A, 2018, 718: 287–291. doi:10.1016/j.msea.2018.01.113
  • [25] Tingaud, D., Jenei, P., Krawczynska, A., Mompiou, F., Gubicza, J., Dirras, G., Investigation of deformation micro-mechanisms in nickel consolidated from a bimodal powder by spark plasma sintering, Mater. Charact., 2015, 99: 118–127. doi:10.1016/j.matchar.2014.11.025
  • [26] Oketola, A., Jamiru, T., Adegbola, A.T., Ogunbiyi, O., Rominiyi, A.L., Smith, S., Spark plasma sintering of ceramic-reinforced binary/ternary nickel and titanium metal matrix composites: Mechanical properties, microstructure, and densification – A review, J. Alloy. Metall. Syst., 2023, 3: 100031. doi:10.1016/j.jalmes.2023.100031
  • [27] Chan, K.S., A grain boundary fracture model for predicting dynamic embrittlement and oxidation-induced cracking in superalloys, Metall. Mater. Trans. A, 2015, 46: 2491–2505
  • [28] Rajkumar, V., Vishnukumar, M., Sowrirajan, M., Kannan, A.R., Microstructure, mechanical properties and corrosion behaviour of Incoloy 825 manufactured using wire arc additive manufacturing, Vacuum, 2022, 203: 111324. doi:10.1016/j.vacuum.2022.111324
  • [29] Al-Saadi, M., Sandberg, F., Jönsson, P.G., Hulme-Smith, C.N., Modelling of strengthening mechanisms in wrought Nickel-Based 825 alloy subjected to solution annealing, Metals, 2021, 11(5): 771. doi:10.3390/met11050771
  • [30] Lu, H., Yang, C., Li, X., Cheng, Q., Ma, H., Wang, Z., et al., Microstructure evolution and superelasticity of Ti-24Nb-xZr alloys fabricated by spark plasma sintering, J. Alloy. Compd., 2020, 823: 153875. doi:10.1016/j.jallcom.2020.153875
  • [31] Rominiyi, A.L., Shongwe, M.B., Ogunmuyiwa, E.N., Babalola, B.J., Lepele, P.F., Olubambi, P.A., Effect of nickel addition on densification, microstructure and wear behaviour of spark plasma sintered CP-titanium, Mater. Chem. Phys., 2020, 240: 122130. doi:10.1016/j.matchemphys.2019.122130
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43b371bd-e7e3-40f6-a189-b46188b9dd0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.