PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

ZrO2-CeO2 ceramic powders obtained from a sol-gel process using acetylacetone as a chelating agent for potential application in prosthetic dentistry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The main objective of this study was to obtain single-phase β-ZrO2 powders with so-called soft agglomerates reproducibile morphology with acetyl-acetone as a chelating-agent. To the best of our knowledge there is no avaiable data which determine the effect of acetyl acetone on the phase composition and morphology of ceria-doped ZrO2 powders for biomedical applications. Methods: Twenty variants of powders with different water to zirconia precursor and acetylacetone to zirconia precursor molar ratios were prepared. 0.9ZrO20.1CeO2 powders were obtained by a hydrolysis and condensation and further calcination of zirconium n-propoxide in a simple one-step sol-gel process. Influence of acetyloacetone to zirconia precursor on the phase composition ratio and water to zirconia precursor was investigated. Samples have been characterized by X-ray diffraction (XRD), Raman spectroscopy (RS), thermal analysis (TGA/DTA) and scanning electron microscopy (SEM) measurements. Results: Ceramic powders prepared by sol-gel process, according to the various concentration of chelating agent and water show different morphology and phase composition. Conclusions: Higher molar ratios of AcAc in range with smaller amounts of water cause hard agglomerates, obtained powders are characterized by highly thermally stable behaviour and various phase composition. With higher molar ratios of water to zirconium-n-propoxide so-called soft agglomerates and one phase powders are obtained.
Rocznik
Strony
53--60
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • Department of Biomaterials and Medical Devices Engineering, Silesian University of Technology, Zabrze, Poland
autor
  • Department of Biomaterials and Medical Devices Engineering, Silesian University of Technology, Zabrze, Poland
autor
  • Department of Optoelectronics, Silesian University of Technology, Gliwice, Poland
autor
  • Institute for Chemical Processing of Coal, Zabrze; Poland
autor
  • Institute of Non-Ferrous Metals, Division of Powders and Composite Materials, Gliwice, Poland
Bibliografia
  • [1] Berendts S., Lerch M. Growth and characterization of low yttria-doped fully cubic stabilized zirconia-based single crystals, J Cryst Growth, 2013, vol. 371, 28–33.
  • [2] Borchers L., Stiesch M., Bach F. W., Buhl J-Ch., Hűbsch CH., Kellner T., Kohorst P., Jendras M. Influence of hydrothermal and mechanical conditions on the strength of zirconia, Acta Biomater, 2010, vol. 8, 4547–4552.
  • [3] Cattani-Lorente M., Scherrer S.S., Ammann P., Jobin M., Wiskott H.W.A. Low temperature degradation of a Y-TZP dental ceramic, Acta Biomater, 2011, vol. 7, 858– 865.
  • [4] Chaim R., Basat G., Kats-Demyanets A. Effect of additives on grain growth during sintering of nanocrystalline zirconia alloys, Mater Lett, 1998, vol. 35, 245-250.
  • [5] Chevalier J., Gremillard L., Vikar A.V., Clarke D.R. The Tetragonal – Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends, J Am Ceram Soc, 2009, vol. 92(9), 1901–1920.
  • [6] Colomer M.T. Straightforward synthesis of Ti-doped YSZ gels by chemical modification of the precursors alkoxides, J Sol-Gel Sci Technol, 2013, vol. 67, 135– 144.
  • [7] Courtin E., Boy P., Piquero T., Vulliet J., Poirot N., Laberty-Robert C.A. Composite sol-gel process to prepare a YSZ electrolyte for Solid Oxide Fuel Cells, J Power Sour, 2012, vol. 206, 77–83.
  • [8] del Monte F., Larsen W., Mackenzie J. D. Stabilization of tetragonal ZrO2 in ZrO2-SiO2 binary oxides, J Am Ceram Soc, 2000, vol. 83(3), 628–634.
  • [9] EN ISO 13356:2013, Implants for surgery. Ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP).
  • [10] Fábregas O., Fuentes R.O., Lamas D. G., Fernández de Rapp M.E., de Reca N.W., Fantini M.C.A., Craievich A.F., Prado A.F., Millen R.P., Temperini M.L.A. Local structure of metal-oxygen bond in compositionally homogeneous, nanocrystalline zirconia-ceria solid solutions synthesized by a gel-combustion process, J Phys Condens Matter, 2006, vol. 18, 7863-7881.
  • [11] Hannink R.H.J. Kelly P.M., Muddle B.C. Transformation toughening in zirconia ceramics, J Am Ceram Soc, 2000, vol. 83(3), 461–487.
  • [12] Huang W., Yang J., Wang Ch., Zou B., Meng X., Wang Y., Cao X., Wang Z. Effects of Zr/Ce molar ratio and water content on thermal stability and structure of ZrO2-CeO2 mixed oxide prepared via sol-gel process, Mater Res Bull, 2012, vol. 47, 2349–2356.
  • [13] Kelly J.R., Denry I. Stabilized zirconia as a structural ceramic: An overview, Dent Mater, 2008, vol. 24, 289–298.
  • [14] Keuper M., Berthold Ch., Nickel K.G. Long-time aging 3 mol.% yttria-stabilized tetragonal zirconia polycrystals at human body temperature, Acta Biomater, 2014, vol. 10, 951–959.
  • [15] Lebrun N., Perrot P. Cerium-Oxygen-Zirconium, in Refractory metal systems: phase diagrams, crystallographic and thermodynamic data, Materials Science International Services GmbH, Stuttgart, 2010, 87-110.
  • [16] Lughi Y., Sergo V. Low temperature degradation-aging-of zirconia: A critical review of the relevant aspects in dentistry, Dent. Mater., 2010, vol. 26, 807–820.
  • [17] Mamana N., Díaz-Parralejo A., Ortiz A.L., Sánchez-Bajo F., Caruso R. Influence of synthesis process on the features of Y2O3-stabilized ZrO2 powders obtained by the solgel method, Ceram Int, 2014, vol. 40, 6421–6426.
  • [18] Menvie Bekale V., Legros , Haut C., Sattonnay G., Huntz A.M. Processing and microstructure characterization of ceria-doped yttria-stabilized zirconia powder and ceramics, Solid State Ionics, 2006, vol. 177, 3339-3347.
  • [19] Miyazaki T., Hotta Y. CAD/CAM systems available for the fabrication of crown and bridge restorations, Aust Dent J, 2011, vol. 56(1), 97–106.
  • [20] Nakonieczny D., Walke W., Majewska J., Paszenda Z. Characterization of magnesiadoped yttria-stabilized zirconia powders for dental technology applications, Acta Bioeng Biomech, 2014, vol. 13(4), 99-106.
  • [21] Naumenko A., Gnatiuk I., Smirnova N., Eremenko A. Characterization of sol-gel derived TiO2/ZrO2 films and powders by Raman spectroscopy, T Sol Films, 2012, vol. 520, 4541–4546.
  • [22] Navio J.A., Marchena F.J., Macias M., Sanchez-Soto P.J., Pichat P. Formation of zirconium titanate powder from a sol gel prepared reactive precursor, J Mater Sci, 1992, vol. 27, 2463–2467.
  • [23] Trusova E.A., Khrushcheva A.A., Vokhmintcec K.V. Sol-gel synthesis and phase composition of ultrafine ceria-doped zirconia powders for functional ceramics, J Eur Ceram Soc, 2012, vol. 32, 1977–1981.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43b1adcf-cfb1-4bd6-9844-3549434ad92f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.