PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Composites based on conductive polymer with carbon nanotubes in DMMP gas sensors – an overview

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Kompozyty na osnowie polimeru przewodzącego z udziałem nanorurek węglowych w czujnikach gazu DMMP – przegląd literatury
Języki publikacji
EN
Abstrakty
EN
A number of recent terrorist attacks make it clear that rapid response, high sensitivity and stability are essential in the development of chemical sensors for the detection of chemical warfare agents. Nerve agent sarin [2-(fluoro-methyl-phosphoryl) oxypropane] is an organophosphate (OP) compound that is recognized as one of the most toxic chemical warfare agents. Considering sarin’s high toxicity, being odorless and colorless, dimethyl methylphosphonate (DMMP) is widely used as its simulant in the laboratory because of its similar chemical structure and much lower toxicity. Thus, this review serves to introduce the development of a variety of fabricated chemical sensors as potential sensing materials for the detection of DMMP in recent years. Furthermore, the research and application of carbon nanotubes in DMMP polymer sensors, their sensitivity and limitation are highlighted. For sorption-based sensors, active materials play crucial roles in improving the integral performances of sensors. The novel active materials providing hydrogen-bonds between the polymers and carbon nanotubes are the main focus in this review.
PL
Przeprowadzone w ostatnich latach liczne ataki terrorystyczne jasno wskazują, że w wypadku czujników do wykrywania chemicznych środków bojowych są niezbędne: ich wysoka czułość, szybka reakcja i stabilność. Środek paralityczno-konwulsyjny sarin (2-fluorometylofosforylooksypropan) to związek fosforoorganiczny (OP) uznawany za jeden z najbardziej toksycznych dostępnych chemicznych środków bojowych. Ze względu na to, że jest on bezwonny, bezbarwny, a ponadto bardzo toksyczny, w badaniach laboratoryjnych szeroko stosuje się jego symulator – metylofosfonian dimetylu (DMMP), o podobnej strukturze chemicznej i znacznie mniejszej toksyczności. W artykule przedstawiono rozwój technologii czujników chemicznych do wykrywania gazu DMMP. Omówiono badania dotyczące wykorzystania kompozytów polimerowych z udziałem nanorurek węglowych w czujnikach gazu DMMP. W wypadku czujników, w których wykorzystuje się zjawisko sorpcji, kluczową rolę w poprawie ich wydajności odgrywają materiały aktywne. W niniejszym przeglądzie skupiono się na nowatorskich materiałach aktywnych, w których występują wiązania wodorowe między polimerem a nanorurkami węglowymi.
Czasopismo
Rocznik
Strony
85--97
Opis fizyczny
Bibliogr. 81 poz., rys. kolor.
Twórcy
  • National Defence University of Malaysia, Centre for Defence Foundation Studies, Kem Sungai Besi, 57000 Kuala Lumpur, Malaysia
  • National Defence University of Malaysia, Centre for Defence Foundation Studies, Kem Sungai Besi, 57000 Kuala Lumpur, Malaysia
  • National Defence University of Malaysia, Centre for Defence Foundation Studies, Kem Sungai Besi, 57000 Kuala Lumpur, Malaysia
  • National Defence University of Malaysia, Centre for Defence Foundation Studies, Kem Sungai Besi, 57000 Kuala Lumpur, Malaysia
  • Universiti Teknikal Malaysia Melaka, Faculty of Mechanical Engineering, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
autor
  • National Defence University of Malaysia, Centre for Defence Foundation Studies, Kem Sungai Besi, 57000 Kuala Lumpur, Malaysia
Bibliografia
  • [1] Dar M.A., Kaushik G., Chiu J.F.V.: “Abatement of Environmental Pollutants, Trends and Strategies”, 2020, pp. 25–66 https://doi.org/10.1016/B978-0-12-818095-2.00002-3
  • [2] Weihui W., Shaohui S., Jian L. et al.: Analyst 2020, 145 (16), 5425. https://doi.org/10.1039/D0AN00878H
  • [3] Sulaiman I.S.C., Chieng B.W., Pojol F.E. et al.: Forensic Toxicology 2020, 38 (2), 297. https://doi.org/10.1007/s11419-019-00513-x
  • [4] John H., Balszuweit F., Steinritz D. et al.: “Handbook of toxicology of chemical warfare agents”, 2020, pp. 875–919. https://doi.org/10.1016/B978-0-12-819090-6.00052-0
  • [5] Mukhopadhyay S., Schoenitz M., Dreizin E.L.: Defence Technology 2020. https://doi.org/10.1016/j.dt.2020.08.010
  • [6] Costanzi S., Machado J.H., Mitchell M.: ACS Chemical Neuroscience 2018, 9 (5), 873. https://doi.org/10.1021/acschemneuro.8b00148
  • [7] Jun J., Lee J.S., Shin D.H. et al.: Journal of Materials Chemistry A 2017, 5 (33), 17335. https://doi.org/10.1039/C7TA02725G
  • [8] Thiermann H., Aurbek N., Worek F.: Treatment of Nerve Agent Poisoning 2016, 2, 1. https://doi.org/10.1039/9781782628071-00001
  • [9] Kushwaha M., Verma S., Chatterjee S.: Journal of Environmental Quality 2016, 45 (5), 1478. https://doi.org/10.2134/jeq2016.03.0100
  • [10] Gorecki L., Korabecny J., Musilek K. et al.: Archives of Toxicology 2016, 90 (12), 2831. https://doi.org/10.1007/s00204-016-1827-3
  • [11] Carletti E., Colletier J.P., Dupeux F. et al.: Journal of Medicinal Chemistry 2010, 53 (10), 4002 https://doi.org/10.1021/jm901853b
  • [12] Hamblin J.: “What Does Sarin Do to People 2013?”. https://www.theatlantic.com/health/archive/2013/05/what-does-sarin-do-to-people/275577/ (access date 30 08 2020).
  • [13] Worek F., Koller M., Thiermann H. et al.: Toxicology 2005, 214 (3), 182 https://doi.org/10.1016/j.tox.2005.06.012
  • [14] Candiotti K.: Canadian Journal of Anesthesia/Journal canadien d’anesthésie 2017, 64 (10), 1059 https://doi.org/10.1007/s12630-017-0920-2
  • [15] Newmark J.: The Neurologist 2007, 13 (1), 20 https://doi.org/10.1097/01.nrl.0000252923.04894.53
  • [16] Kuca K., Korabecny J., Dolezal R. et al.: RSC Advances 2017, 7 (12), 7041 https://doi.org/10.1039/C6RA16499D
  • [17] Norrrahim M.N.F., Razak M.A.I.A., Shah N.A.A. et al.: RSC Advances 2020, 10 (8), 4465https://doi.org/10.1039/C9RA08599H
  • [18] Holmes O., Phillips T.: “Kim Jong-nam killed by VX nerve agent, say Malaysian police”, The Guardian 2017.
  • [19] Rodriguez-Llanes J.M., Guha-Sapir D., Schlüter B.S.: Conflict and Health 2018, 12 (1), 1 https://doi.org/10.1186/s13031-018-0150-4
  • [20] Dickinson E.T., Love J.S.: Journal of Emergency Medical Services 2017, 42 (9) https://www.jems.com/2017/09/01/a-review-of-chemical-warfare-agents-and-treatment (access date 29 10 2020).
  • [21] Alali K.T., Liu J., Aljebawi K. et al.: Journal of Alloys and Compounds 2019, 780, 680 https://doi.org/10.1016/j.jallcom.2018.11.317
  • [22] Lee J.S., Shin D.H., Jun J.: ACS Nano 2013, 7 (11), 10139 https://doi.org/10.1021/nn404353w
  • [23] Schroeder V., Savagatrup S., He M. et al.: Chemical Reviews 2018, 119 (1), 599. https://doi.org/10.1021/acs.chemrev.8b00340
  • [24] Spinelle L., Gerboles M., Kok G. et al.: Sensors 2017, 17 (7), 1520 https://doi.org/10.3390/s17071520
  • [25] Park J., Kim J., Kim K.: Nanoscale 2016, 8 (20), 10591 https://doi.org/10.1039/C6NR01468B
  • [26] Holdren S., Tsyshevsky R., Fears K. et al.: ACS Catalysis 2018, 9 (2), 902 https://doi.org/10.1021/acscatal.8b02999
  • [27] Agrawal M., Sava Gallis D.F., Greathouse J.A. et al.: The Journal of Physical Chemistry C 2018, 122 (45), 26061 https://doi.org/10.1021/acs.jpcc.8b08856
  • [28] Bartelt-Hunt S.L., Knappe D.R., Barlaz M.A.: Critical Reviews in Environmental Science and Technology 2008, 38 (2), 112 https://doi.org/10.1080/10643380701643650
  • [29] Mathieu O., Kulatilaka W.D., Petersen E.L.: Combustion and Flame 2018, 191, 320 https://doi.org/10.1016/j.combustflame.2018.01.020
  • [30] Shangguan Y.: “Intrinsic Properties of Poly(Ether-B-Amide) (Pebax® 1074) for Gas Permeation and Pervaporation”, University of Waterloo, 2011.
  • [31] Delfino R.T., Ribeiro T.S., Figueroa-Villar J.D.: Journal of the Brazilian Chemical Society 2009, 20 (3), 407 http://dx.doi.org/10.1590/S0103-50532009000300003
  • [32] Trotochaud L., Head A.R., Büchner C. et al.: Surface Science 2019, 680, 75 https://doi.org/10.1016/j.susc.2018.10.003
  • [33] Kuiper A.E.T., Van Bokhoven J.J.G.M., Medema J.: Journal of Catalysis 1976, 43 (1–3), 154 https://doi.org/10.1016/0021-9517(76)90302-X
  • [34] Powroźnik P., Grządziel L., Jakubik W. et al.: Sensors and Actuators B: Chemical 2018, 273, 771 https://doi.org/10.1016/j.snb.2018.06.101
  • [35] Kim T.I., Maity S.B., Bouffard J. et al.: Analytical Chemistry 2016, 88 (18), 9259 https://doi.org/10.1021/acs.analchem.6b02516
  • [36] Dagnaw F.W., Feng W., Song Q.H.: Sensors and Actuators B: Chemical 2020, 318, 127937 https://doi.org/10.1016/j.snb.2020.127937
  • [37] Aldahhak H., Powroznik P., Pander P. et al.: The Journal of Physical Chemistry C 2020, 124 (11), 6090 https://doi.org/10.1021/acs.jpcc.9b11116
  • [38] Li J., Lu Y., Ye Q. et al.: Electrochemical and Solid State Letters 2005, 8 (11), H100 https://doi.org/10.1149/1.2063289
  • [39] Kauffman D.R., Star A.: Analyst 2010, 135 (11), 2790. https://doi.org/10.1039/C0AN00262C
  • [40] Zhang T., Nix M.B., Yoo B.Y. et al.: Electroanalysis 2006, 18 (12), 1153 https://doi.org/10.1002/elan.200603527
  • [41] Johnson A.C., Staii C., Chen M. et al.: Semiconductor Science and Technology 2006, 21 (11), S17. https://doi.org/10.1088/0268-1242/21/11/S03
  • [42] Mangu R., Rajaputra S.V.P.: Nanotechnology 2011, 22 (21), 215502. https://doi.org/10.1088/0957-4484/22/21/215502
  • [43] Choi S.W., Kim J., Byun Y.T.: Sensors and Actuators B: Chemical 2017, 238, 1032. https://doi.org/10.1016/j.snb.2016.07.153
  • [44] Janudin N., Abdullah N., Wan Yunus W.M.Z. et al.: Journal of Nanotechnology 2018. https://doi.org/10.1155/2018/2107898
  • [45] Gong S., Wu D., Li Y. et al.: Carbon 2018, 137, 188 https://doi.org/10.1016/j.carbon.2018.05.029
  • [46] Abdulla S., Mathew T.L., Pullithadathil B.: Sensors and Actuators B: Chemical 2015, 221, 1523 https://doi.org/10.1016/j.snb.2015.08.002
  • [47] Rahman M.M., Hussein M.A., Alamry K.A. et al.: Nano-Structures & Nano-Objects 2018, 15, 63 https://doi.org/10.1016/j.nanoso.2017.08.006
  • [48] Bagheri H., Hajian A., Rezaei M. et al.: Journal of Hazardous Materials 2017, 324, 762 https://doi.org/10.1016/j.jhazmat.2016.11.055
  • [49] Wang M.Q., Zhang Y., Bao S.J. et al.: Electrochimica Acta 2016, 190, 365 https://doi.org/10.1016/j.electacta.2015.12.199
  • [50] Sharma A.K., Mahajan A., Bedi R.K. et al.: Applied Surface Science 2018, 427, 202 https://doi.org/10.1016/j.apsusc.2017.08.040
  • [51] Ying Z., Jiang Y., Du X. et al.: Sensors and Actuators B: Chemical 2007, 125 (1), 167 https://doi.org/10.1016/j.snb.2007.02.002
  • [52] Kientz C.E.: Journal of Chromatography A 1998, 814 (1–2), 1. https://doi.org/10.1016/S0021-9673(98)00338-0
  • [53] Degenhardt-Langelaan C.E.A.M., Kientz C.E.: Journal of Chromatography A 1996, 723 (1), 210 https://doi.org/10.1016/0021-9673(95)00822-5
  • [54] Hooijschuur E.W.J., Kientz C.E., Udo A.: Journal of Chromatography A 2001, 928 (2), 187 https://doi.org/10.1016/S0021-9673(01)01133-5
  • [55] Hook G.L., Kimm G., Koch D. et al.: Journal of Chromatography A 2003, 992 (1–2), 1 https://doi.org/10.1016/S0021-9673(03)00278-4
  • [56] Eckenrode B.A.: Journal of the American Society for Mass Spectrometry 2001, 12 (6), 683 https://doi.org/10.1021/jasms.8b01632
  • [57] Vermillion W.D., Crenshaw M.D.: Journal of Chromatography A 1997, 770 (1–2), 253 https://doi.org/10.1016/S0021-9673(97)00160-X
  • [58] Juillet Y., Gibert E., Begos A. et al.: Analytical and Bioanalytical Chemistry 2005, 383 (5), 848 https://doi.org/10.1007/s00216-005-0064-z
  • [59] Wang J., Chatrathi M.P., Mulchandani A. et al.: Analytical Chemistry 2001, 73 (8), 1804 https://doi.org/10.1021/ac001424e
  • [60] Kubáň P., Seiman A., Makarõtševa N. et al.: Journal of Chromatography A 2011, 1218 (18), 2618 https://doi.org/10.1016/j.chroma.2011.03.006
  • [61] Bartlett P.N., Archer P.B.M., Ling-Chung S.K.: Sensors and Actuators 1989, 19 (2), 125 https://doi.org/10.1016/0250-6874(89)87065-9
  • [62] Petty M.C., Casalini R.: Engineering Science & Education Journal 2001, 10 (3), 99 https://doi.org/10.1049/esej:20010304
  • [63] An K.H., Jeong S.Y., Hwang H.R. et al.: Advanced Materials 2004, 16 (12), 1005 https://doi.org/10.1002/adma.200306176
  • [64] Gaikwad S., Bodkhe G., Deshmukh M. et al.: Modern Physics Letters B 2015, 29 (06n07), 1540046 https://doi.org/10.1142/S0217984915400461
  • [65] Wang X., Ugur A., Goktas H. et al.: ACS Sensors 2016, 1 (4), 374 https://doi.org/10.1021/acssensors.5b00208
  • [66] Arif M.F., Kumar S., Gupta T.K. et al.: Composites Part A: Applied Science and Manufacturing 2018, 113, 141 https://doi.org/10.1016/j.compositesa.2018.07.021
  • [67] Fennell J.F., Hamaguchi H., Yoon B. et al.: Sensors 2017, 17 (5), 982 https://doi.org/10.3390/s17050982
  • [68] MacDiarmid A.G., Epstein A.J.: Synthetic Metals 1995, 69 (1–3), 85 https://doi.org/10.1016/0379-6779(94)02374-8
  • [69] Derycke V., Martel R., Appenzeller J. et al.: Applied Physics Letters 2002, 80 (15), 2773 https://doi.org/10.1063/1.1467702
  • [70] Ramesh S., Lee Y.J., Msolli S. et al.: RSC Advances 2017, 7 (80), 50912 https://doi.org/10.1039/C7RA09161C
  • [71] Powroznik P., Jakubik W., Stolarczyk A. et al.: Sensors 2020, 20 (2), 491 https://doi.org/10.3390/s20020491
  • [72] Pingel P., Arvind M., Kölln L. et al.: Advanced Electronic Materials 2016, 2 (10), 1600204 https://doi.org/10.1002/aelm.201600204
  • [73] Jin S., Xue G.: Macromolecules 1997, 30 (19), 5753 https://doi.org/10.1021/ma9606925
  • [74] Xu M., Lu D., Garsuch A. et al.: Journal of the Electrochemical Society 2012, 159 (12), A2130 https://doi.org/10.1149/2.077212jes
  • [75] Wang F., Gu H., Swager T.M.: Journal of the American Chemical Society 2008, 130 (16), 5392 https://doi.org/10.1021/ja710795k
  • [76] Zhang R.Q., Wang L.B., Bai R.X. et al.: Composites Part B: Engineering 2019, 173, 106894 https://doi.org/10.1016/j.compositesb.2019.05.105
  • [77] Chang C.P., Yuan C.L.: Journal of Materials Science 2009, 44 (20), 5485 https://doi.org/10.1007/s10853-009-3766-3
  • [78] Yoo R., Kim J., Song M.J. et al.: Sensors and Actuators B: Chemical 2015, 209, 444 https://doi.org/10.1016/j.snb.2014.11.137
  • [79] Kumar D., Jha P., Chouksey A. et al.: Materials Chemistry and Physics 2016, 181, 487https://doi.org/10.1016/j.matchemphys.2016.06.085
  • [80] Lai Y.T., Kuo J.C., Yang Y.J.: Applied Physics Letters 2013, 102 (19), 191 912 https://doi.org/10.1063/1.4804297
  • [81] Yuan C.L., Chang C.P.: Chung Cheng Institute of Technology 2009, 38, 147.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43ae0428-e29e-45e7-a491-d633e03963cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.