PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The removal of organic compounds by natural and synthetic surface-functionalized zeolites: a mini-review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
„Mineral sorbents”, raw materials, power engineering, environmental protection, modern technologies : third scientific and technical conference : 18–19 September 2017, Cracow
Języki publikacji
EN
Abstrakty
EN
The use of zeolites as sorbents has been investigated as a replacement for existing costly methods of removing organic contaminants from water solutions. Zeolites can be modified by inorganic salts, organic surfactants, metals or metal oxides in order to increase their adsorption capacity. The unique ion exchange and adsorption properties of zeolites make them very suitable for application in the removal of organic compounds such as volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), phenols and other complex petrochemicals. Many different studies have demonstrated their effectiveness in reducing the concentrations of organic contaminants as well as petroleum derivatives in water, which has been summarized in this paper.
Czasopismo
Rocznik
Strony
145--156
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • EDF Polska S.A., Department of Research and Development, ul. Ciepłownicza 1, 31-587 Kraków, Poland
autor
  • AGH University of Science and Technology in Kraków, 30 Mickiewicza Av., 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology in Kraków, 30 Mickiewicza Av., 30-059 Kraków, Poland
autor
  • EDF Polska S.A., Department of Research and Development, ul. Ciepłownicza 1, 31-587 Kraków, Poland
  • EDF Polska S.A., Department of Research and Development, ul. Ciepłownicza 1, 31-587 Kraków, Poland
Bibliografia
  • Alkan, M., Hopa, C., Yilmaz, Z., & Guler, H. (2005). The effect of alkali concentration and solid/liquid ratio on the hydrothermal synthesis of zeolite NaA from natural kaolinite. Microporous and Mesoporous Materials, 86, 176-184. DOI: 10.1016/j.micromeso.2005.07.008.
  • Almeida, I. L., Antoniosi Filho, N. R., Alves, M. I., Carvalho, B. G., & Coelho, N. M. (2012). Removal of BTEX from aqueous solution using Moringaoleifera seed cake. Environmental Technology, 33, 1299-1305. DOI: 10.1080/09593330.2011.621451.
  • Aivalioti, M., Pothoulaki, D., Papoulia, P., & Gidarakos, E. (2012). Removal of BTEX, MTBE and TAME from aqueous solutions by adsorption onto raw and thermally treated lignite. Journal of Hazardous Materials, 207-208, 136-146. DOI: 10.1016/j.hazmat.2011.04.084.
  • Apreutesei, R. E., Catrinescu, C., & Teodosiu, C. (2008). Surfactant-modified natural Zeolites for environmental applications in water purification. Environmental Engineering and Management Journal, 7, 149-161.
  • Bandura, L., Woszczuk, A., Kołodyńska, D., & Franus, W. (2017a). Application of Mineral Sorbents for Removal of Petroleum Substances: A Review. Minerals, 7, 1-25. DOI: 10.3390/min7030037.
  • Bandura, L., Kołodyńska, D., & Franus, W. (2017b). Adsorption of BTX from aqueous solutions by Na-P1 zeolite obtained from fly ash. Process Safety and Environmental Protection, 109, 214-223. DOI: 10.1016.j.psep.2017.03.036.
  • Bandura L., Franus M., Józefaciuk G., & Franus W. (2015). Syntetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup. Fuel, 147, 100-107. DOI: 10.1016/j.fuel.2015.01.067.
  • Bowman, R. S. (2003). Applications of surfactant-modified zeolites to environmental remediation. Microporous and Mesoporous Materials, 61, 43-56. DOI: 10.1016/S1387-1811(03)00354-8.
  • Chao, H.-P., Peng, C.-L., Lee, C.-K., & Han, Y.-L. (2011). A study on sorption of organic compounds with different water solubilities on octadecyltrichlorosilane-modified NaY zeolite. Journal of the Taiwan Institute of Chemical Engineers, 43, 195-200. DOI: 10.1016/j.tice.2011.10.002.
  • Derkowski, A., Franus, W., Waniak-Nowicka, H., & Czímerová, A. (2007). Textural properties vs. CEC and EGME retention of Na-X zeolite prepared from fly ash at room temperature. International Journal of Mineral Processing, 82(2), 57-68. DOI: 10.1016/j.minpro.2006.10.001.
  • Franus, W., & Wdowin, M. (2010). Removal of ammonium ions by selected natural and synthetic zeolites. Gospodarka Surowcami Mineralnymi - Mineral Resources Management, 26(4), 133-148.
  • Franus, W., Wdowin, M., & Franus, M. (2014). Synthesis and characterization of zeolites prepared from industrial fly ash. Environmental Monitoring and Assessment, 186, 5721-5729. DOI: 10.1007/s10661-014-3815-5.
  • Gatta, G. D., Lotti, P., Nestola, F., & Pasqual, D. (2012). On the high-pressure behavior of gobbinsite, the natural counterpart of the synthetic zeolite Na–P2. Microporous and Mesoporous Materials, 163, 259-269. DOI: 10.1016/j.micromeso.2012.07.005.
  • Grce, M., & Pavelić, K. (2005). Antiviral properties of clinoptilolite. Microporous and Mesoporous Materials, 79, 165-169. DOI: 10.1016/j.micromeso.2004.10.039.
  • Itabashi, K., Fukushima, T., & Igawa, K. (1986). Synthesis and characteristic properties of siliceous mordenite. Zeolites, 6, 30 -34. DOI: 10.1016/0144-2449(86)90008-4.
  • Kibazohi, O., Yun, S. I., & Anderson, W. A. (2004). Removal of Hexane in Biofilters Packed with Perlite and a Peat-Perlite Mixture. World Journal of Microbiology and Biotechnology, 20, 337-343. DOI: 10.1023/B:WIBI.0000033054.15023.71.
  • Kuleyin, A. (2006). Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite. Journal of Hazardous Materials, 144, 307-315. DOI: 10.1016/j.hazmat.2006.10.036.
  • Lee, S. M., & Tiwari, D. (2012). Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview. Applied Clay Science, 67-68, 91-98. DOI: 10.1016/j.clay.2012.02.006.
  • Lemic, J., Tomasevic-Canovic, M., Adamovic, M., Kovacevic, D., & Milicevic, S. (2007). Competitive adsorption of polycyclic aromatic hydrocarbons on organo-zeolites. Microporous and Mesoporous Materials, 105, 317-323. DOI: 10.1016/j.micromeso.2007.04.014.
  • Li, Z., & Bowman, R. S. (1998). Sorption of Perchloroethylene by Surfactant-Modified Zeolite as Controlled by Surfactant Loading. Environmental Science and Technology, 32, 2278-2282. DOI: 10.1021/es971118r.
  • Mansouri, N., Rikhtegar, N., Panahi, H. A., Atabi, F., & Shahraki B. K. (2013). Porosity, characterization and structural properties of natural zeolite - clinoptilolite - as a sorbent. Environment Protection Engineering, 39, 139-152.
  • Margeta, K., Zabukovec Logarn, N., Šiljeg, M., & Farkas, A. (2013). Natural Zeolites in Water Treatment – How Effective is Their Use. Water Treatment, Dr. Walid Elshorbagy (Ed.), InTech, DOI: 10.5772/50738.
  • Mathur, A. K., Majumder, C. B., & Chatterjee, S. (2007). Combined removal of BTEX in air stream by using mixture of sugar cane bagasse, compost and GAC as biofilter media. Journal of Hazardous Materials, 148, 64-74. DOI: 10.1016/j.jhazmat.2007.02.030.
  • Meininghaus, C. K. W., & Prins, R. (2000). Sorption of volatile organic compounds on hydrophobic zeolites. Microporous and Mesoporous Materials, 35-36, 349-365. DOI: 10.1016/S1387-1811(99)00233-4.
  • Muir, B., & Bajda, T. (2016a). Organically modified zeolites in petroleum compounds spill cleanup – Production, efficiency, utilization. Fuel Processing Technology, 149, 153-162. DOI: 10.1016/j. fuproc.2016.09.017.
  • Muir, B., Matusik, J., & Bajda, T. (2016b). New insights into alkylammonium-functionalized clinoptilolite and Na-P1 zeolite: Structural and textural features. Applied Surface Science, 361, 242-250. DOI: 10.1016/j.apsusc.2015.11.116.
  • Ranck, J. M., Bowman, R. S., Weeber, J. L., Katz, L. E., & Sullivan, J. (2005). BTEX removal from produced water using surfactant-modified zeolite. Journal of Environmental Engineering, 131, 434-442. DOI: 10.1061/(ASCE)0733-9372(2005)131:3(434).
  • Saini, V. K., & Pires, J. (2017). Development of metal organic fromwork-199 immobilized zeolite foam for adsorption of common indoor VOCs. Journal of Environmental Sciences, 55, 321-330. DOI: 10.1016/j.jes.2016.09.017.
  • Sand, L. B. (1968). Synthesis of large-port and small port mordenites. In Molecular Sieves, Society of Chemical Industry, London, 71-77.
  • Szala, B., Bajda, T., Matusik, J., Zięba, K., & Kijak, B. (2015). BTX sorption on Na-P1 organo-zeolite as a process controlled by the amount of adsorbed HDTMA. Microporous and Mesoporous Materials, 202, 115-123. DOI: 10.1016/j.micromeso.2014.09.033.
  • Qin, X. S., Huang, G. H., & Li, Y. P. (2008). Risk Management of BTEX Contamination in Ground Water – An Integrated Fuzzy Approach. Ground Water, 46, 5, 755-767. DOI: 10.1111/j.1745-6584.2008.00464.x.
  • Querol, X., Alastuey, A., Fernandez-Turiel, J. L., & Lopez-Soler, A. (1995). Synthesis of zeolites by alcaline activation of ferro-aluminous fly ash. Fuel, 74, 1226-1231. DOI: 10.1016/0016-2361(95)00044-6.
  • Xie, J., Meng, W., Wu, D., Zhang, Z., & Kong, H. (2012). Removal of organic pollutants by surfactant modified zeolite: Comparison between ionizable phenolic compounds and non-ionizable organic compounds. Journal of Hazardous Materials, 231-232, 57-63. DOI: 10.1016/j.hazmat.2012.06.035.
  • Xie, Q., Xie, J., Wang, Z., Wu, D., Zgang, Z., & Kong, H. (2013). Adsorption of organic pollutants by surfactant modified zeolite as controlled by surfactan chain length. Microporous and Mesoporous Materials, 179, 144-150. DOI: 10.1016/j.micromeso.2013.05.027.
  • Zhao, H., & Vence, G. F. (1988). Sorption of trichloroethylene by organo-clays in the presence of humic substances. Water Research, 32, 3710-3716. DOI: 10.1016/S0043-1354(98)00172-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43a9152c-6726-442c-a70c-72d7f9f2ec3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.