Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Reducing contaminant emissions is an important task of any industry, included the maritime one. In fact, in April 2018, IMO (International Maritime Organization) adopted an Initial Strategy on reduction of Greenhouse gas (GHG) emissions from ships. An essential part responsible for producing these emissions is the diesel engine. For that reason vessels include separation systems for heavy fuel oils. The purpose of this work is to improve the predictive maintenance techniques incorporating new intelligent approaches. An analysis of vibrations of this separation system was made and their characteristics were used in a Genetic Neuro-Fuzzy System in order to design an intelligent maintenance based on condition monitoring. The achieved results show that the proposed method provides an improvement since it indicates if a maintenance operation is necessary before the schedule one or if it could be possible extend the next maintenance service.
Rocznik
Tom
Strony
385--390
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- University of La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
autor
- University of La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
autor
- University of La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
autor
- University of La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
Bibliografia
- 1. Baojia, C., Baojia, S., Fafa, C., Hongliang, T., Wenrong, X., Zhang, F., Zhao, C., 2018. Fault diagnosis method based on integration of RSSD and wavelet transform to rolling bearing. Measurement.
- 2. Cerrada, M., Sánchez, R., Cabrera, D., Zurita, G., Li, C., Cerrada, M., Sánchez, R.V., Cabrera, D., Zurita, G., Li, C., 2015. Multi‐Stage Feature Selection by Using Genetic Algorithms for Fault Diagnosis in Gearboxes Based on Vibration Signal. Sensors 15, 23903–23926.
- 3. Chen, S., Cowan, C.F.N., Grant, P.M., 1991. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Networks 2, 302–309
- 4. Cordón, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L., 2004. Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets Syst. 141, 5–31
- 5. Gkerekos, C., Lazakis, I., Theotokatos, G., 2017. Ship Machinery condition monitoring using performance data through supervised learning. ISBN Smart Sh. Technol. 9781909024632, 105–111
- 6. Go, H., Kim, J.‐S., Lee, D.‐H., 2013. Operation and preventive maintenance scheduling for containerships: Mathematical model and solution algorithm. Eur. J. Oper. Res. 229, 626–636.
- 7. Gou, X., Bian, C., Zeng, F., Xu, Q., Wang, W., Yang, S., 2018. A Data‐Driven Smart Fault Diagnosis Method for Electric Motor, in: 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS‐C). IEEE, pp. 250–257
- 8. He, J., Yang, S., Gan, C., He, J., Yang, S., Gan, C., 2017. Unsupervised Fault Diagnosis of a Gear Transmission Chain Using a Deep Belief Network. Sensors 17, 1564
- 9. Jakovlev, S., Andziulis, A., Daranda, A., Voznak, M., Eglynas, T., 2017. Research on ship autonomous steering control for short‐sea shipping problems. Transport 32, 198–208
- 10. Jang, J.‐S.R., 1993. ANFIS: adaptive‐network‐based fuzzy inference system. IEEE Trans. Syst. Man. Cybern. 23, 665–685
- 11. M. Samhouri , A. Al‐Ghandoor , S. Alhaj Ali , I. Hinti, W.M. a, 2009. An Intelligent Machine Condition Monitoring System Using Time‐Based Analysis: Neuro‐Fuzzy Versus Neural Network. Jordan J. Mech. Ind. Eng. 3, 294–305.
- 12. Marichal, G.N., Hernández, A., Rojas, J.A., Melón, E., Rodríguez, J.A., Padrón, I., 2016. Sistema Inteligente de apoyo a maniobras de grandes buques en puertos. RIAI ‐ Rev. Iberoam. Autom. e Inform. Ind.
- 13. Martini, A., Troncossi, M., 2016. Upgrade of an automated line for plastic cap manufacture based on experimental vibration analysis. Case Stud. Mech. Syst. Signal Process. 3, 28–33.
- 14. Muszynska, A., 2005. Rotordynamics, CRC Taylor & Francis Group. New York.
- 15. Nobre, F.S.M., 1995. Genetic‐neuro‐fuzzy systems: a promising fusion, in: Proceedings of 1995 IEEE International Conference on Fuzzy Systems. The International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium. IEEE, pp. 259–266
- 16. Rajasekaran, S., Pai, G.A.V., 2003. Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and applications.
- 17. Simani, S., Fantuzzi, C., Patton, R.J., 2003. Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques. - doi:10.1007/978-1-4471-3829-7
- 18. Wang, J., Zhang, L., Duan, L., Gao, R.X., 2017. A new paradigm of cloud-based predictive maintenance for intelligent manufacturing. J. Intell. Manuf. 28, 1125–1137. - doi:10.1007/s10845-015-1066-0
- 19. White, G., 2010. Introducción al Análisis de Vibraciones. AZIMA, 16-98.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43a85fe5-0dc6-4c72-9689-849ec0d03355