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ABSTRACT: Reducing contaminant emissions is an important task of any industry, included the maritime one.
In fact, in April 2018, IMO (International Maritime Organization) adopted an Initial Strategy on reduction of
Greenhouse gas (GHG) emissions from ships. An essential part responsible for producing these emissions is the
diesel engine. For that reason vessels include separation systems for heavy fuel oils. The purpose of this work is
to improve the predictive maintenance techniques incorporating new intelligent approaches. An analysis of
vibrations of this separation system was made and their characteristics were used in a Genetic Neuro-Fuzzy
System in order to design an intelligent maintenance based on condition monitoring. The achieved results show
that the proposed method provides an improvement since it indicates if a maintenance operation is necessary

before the schedule one or if it could be possible extend the next maintenance service.

1 INTRODUCTION

Recently, relevant advances in predictive maintenance
have been developed, since it has been demonstrated
that it is the most suitable and efficient method
(Muszynska, 2005, Wang et al., 2017, White, 2010).
This technique is based on the basis that machinery
will show unusual behavior before of failing. In the
maritime industry is especially useful (Gkerekos et al.,
2017; Go et al., 2013; Jakovlev et al., 2017) owing to the
fact that any unexpected failure during a journey can
make a danger.

One of the most interesting predictive
maintenance is which based on vibration analysis
given that it is the non-destructive tests that provides
the greatest amount of information about internal
functioning of a machine (Martini and Troncossi,
2016; White, 2010). Therefore, knowing its normal
signature of vibration, it is possible to prevent a
breakdown by monitoring. In this way, vibrations are

indicator of a potential problem. Therefore, to count
on indirect monitoring systems would be very
advantageous to preventively maintain aboard and
hence to avoid damages. Separation systems for
heavy fuel oils are considered to be complex
mechanical systems and their reparation is usually
difficult. Owing to its complexity, a wide monitoring
of its behavior is essential in order to detect incipient
failures. Thus, a sensor that can measure vibrations
should be incorporated. The maintenance of these
systems is based on preventive maintenance
scheduled from their working hours. In other words,
when a certain number has been achieved, a
preventive scheduled maintenance is carried out.
Nevertheless, with a monitoring, it could be possible
to extend the next maintenance service if the system is
healthy or make it scheduled ahead of time if the
separator system shows failure indications. For this, it
is essential to design a technique in order to
conveniently extract and process this amount of
information.
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The application of artificial intelligence (AI) in
machine diagnosis has been widely investigated in
different fields (M. Samhouri , A. Al-Ghandoor , S.
Alhaj Ali, I. Hinti, 2009; Simani et al., 2003). Recently,
there is a tendency for the use of genetic algorithms
(Baojia et al., 2018; Cerrada et al., 2015; Gou et al,,
2018; He et al., 2017). The purpose of this work is to
combine predictive maintenance based on condition
monitoring, with a genetic neuro-fuzzy system. The
proposed intelligent algorithm intends to process the
measured vibrations and provides information about
the internal state of the heavy fuel oil separators. For
that, several actual measurements were carried out on
board separators of Ro-Pax vessel.

In Section 2 a description of the heavy fuel oil
separation system used in the actual experimental
tests and an explanation of the measurement
procedure are explained. In Section 3 the signal
processing method based on artificial intelligence
techniques is exposed. Section 4 shows the results and
finally in Section 5 conclusions are presented.

2 EXPERIMENTAL STUDY

With the purpose of collecting vibration data from
separators, several actual measurements were carried
out on board centrifugal heavy fuel oil separators of
Ro-Pax vessels to transport passengers and freight.
Figure 1 shows the model Alfa Laval SA 861 separator
used in this work, which technical characteristics are
exposed in Table 1.

Figure 1. Marine Fuel Separators Alfa Laval SA 861.

As it was mentioned previously, vibration
measurements were used in order to detect changes in
the behavior of machinery. For this reason, a triaxial
accelerometer sensor, Bruel & Kjaer 4504A (Bruel &
Kjaer, Naerum, Denmark) was attached to separator
system. In each separator ten consecutive vibration
measurements were made for 2 seconds with a
sampling frequency (Fs) of 2560 Hz. The used sensor
has three independent outputs for simultaneous high-
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level measurements in three mutually perpendicular
directions. The sensitivity of the accelerometer is 10
mV/g, and it measures a range of up to 9.0 KHz, and
its lower bound of the sensing frequency range is 1
Hz. The orientation of the accelerometer is as shown
in Figure 2: the X axis is vertical, the Y axis goes
through from right to left, and the Z axis traverses the
device from front to back. Figure 2 shows the final
assembly where it can be seen that the accelerometer
was connected to a Briiel&Kjaer PHOTON+ dynamic
signal analyzer and this one to a laptop where the
measurements were recorded [30]. The PHOTON+
consists of data acquisition hardware and PC software
able to measure, to record, to analyze and to post-
process. It allows for real-time signal analysis. In fact,
it could be used as a FFT analyzer with a
measurement dynamic range of 115 dB and an 84 kHz
real-time rate.

Table 1. Technical characteristics of Marine Fuel Separators
Alfa Laval SA 861.

Characteristics Values

Belt transmission UFT-21

Electrical current frequency 50 HZ

Motor power (50 Hz) 18.5 kW

Motor speed synchronous (50Hz) 3000 rpm

Max. density of feed/sediment 1100 / 2057 kg/m?
Max. density of operating liquid 1000 kg/m?
Feed temperature, min./max. 0°C to 100°C
Max. viscosity of operating liquid 700 cSt at 50°C.

Figure 2. Final assembly of accelerometer and PHOTON+
analyzer.

3 INTELLIGENT APPROACH

The maintenance of majority of machineries onboard
is based on the number of hours. Particularly, the
separator systems are revised when they has been
working 12000h. This kind of maintenance is not
efficient, since it is often possible to keep the device
working as long as it does not show sign of failure.



On the other hand, it is also possible that a
maintenance operation should be done before a
scheduled one because of a failing piece. For this
reason, this work tries to find an efficiency-based
maintenance method for the oil separators through
intelligent condition monitoring. The number of
working hours has been considered as a key
parameter in this work. In this sense, it would be
convenient to associate this factor with the internal
state of the system, that in this paper it is studied
through the vibration signature.

In order to collect data, real vibrations were
measured over on board separators systems. These
recorded vibrations are analyzed by a signal
processing stage with the purpose of obtaining their
internal characteristic parameters. In this research, a
FFT is applied in order to get the frequency domain of
the separator vibrations. The first five frequencies
with greater amplitude were collected, along with
their  corresponding amplitudes as indirect
parameters. With the aim of linking these pair of data,
that is, the internal state of the separator, with the
number of working hours, an intelligent method
based on training was used. Specifically, a three
layers genetic neuro-fuzzy system (Cordén et al,
2004; Marichal et al., 2016; Nobre, 1995), with an
analogous structure to the one proposed by Jang
(Jang, 1993). System inputs are introduced to the first
layer, which represent the membership functions, and
the outputs of this layer are expressed by Equation 1.
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where Ni=input number; N>=number of nodes of the
intermediate layer; u= i-th input, mi=center of the
membership function; oj=the width of the
membership function, @i= output neuron with the i-th
input and the output connected to the j-th node of the
intermediate layer.

The second layer outputs correspond to the rule
system, and it is shown in Equation 2.
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Finally Equation 3 represents the global output,

NZ
SV E;

Yk=£+zj k=1,.,N, 3)
£ .
j=177

where Ns= genetic neuro-fuzzy output number;
svj=estimated value of the k-th output given by the j-
th node.

As Equations (1)—(3) show, the genetic neuro-fuzzy
system depends on the center and width of the
membership function, the estimated system outputs
and the number of nodes of the intermediate layer.
These parameters are fixed through a three-phase
learning algorithm. Initial values and an optimization
of the number of nodes of the hidden layer are

established in the first two phases. Then at the third
phase these parameters are reset.

3.1 Fist Level: Unsupervised Learning Phase

In this first phase, the initial values to mj and svij are
provided by a Kohonen’s self-organizing [37] map,
where their inputs are:

V=(UU,..UYY,..Y,) )

The vector (U1 Uz...Uni) is the input vector to the
genetic neuro-fuzzy system, and (Y1 Y2...Yns) is the
desired output vector. Equation (5) shows the
necessary initial weight vector of the self-organizing
map and it is acquired by the mean between the
maximum and minimum of the input set by the user.
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An update of the weights is achieved after a
monodimensional Kohonen self-organizing map is
applied, since it provide the winner node.

my = ij;j:1,2,...,N2;i:1,2 (6)

This algorithm is an unsupervised learning
algorithm; therefore, once the process has been
completed and the winner node has been obtained,
the center of the membership functions (mij) is fixed,
and then the estimated system outputs (svik) will be
carried out.

This phase is crucial, since the initial assignment
establishes the starting point. In the following
learning phases, these parameters will be modified
from the initial ones.

3.2 Second Level: The Genetic Algorithm Phase

In this phase a genetic neuro-fuzzy system is built,
since in the previous one Nz mj and svik were
obtained, but then there are still values for the
parameters oj missing. Moreover, an optimization
process is necessary in order to obtain a minimum
number of rules. Then, in this phase will be
accomplish a more reduced number of nodes in the
hidden layer.

The genetic algorithm (Corddn et al., 2004; Nobre,
1995; Rajasekaran and Pai, 2003) used in this phase is
based on the biological model of genetic evolution.
On the one hand, there is an individual with basic
information, particularly a vector; on the other hand,
there are genes, in this work they are the vector
components. Therefore, the components of each
vector represent the hidden nodes by a Boolean
parameter and the width of the membership
functions. Following, a fitness function is defined,
taking into account the difference between the real
outputs and the individual outputs. Once the genetic
neuro-fuzzy algorithm is applied, individual
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satisfactory values for oy, and an adequate set of N2
rules (nodes on the hidden layer) can be reached.

3.3 Third Level: Supervised Learning Phase

The last phase attempts to improve the initial values
for the my, oy, and svik parameters. Owing to the fact
that the system used in this work is similar to a three
layer neural network, the same mathematical
expression as the neurons in a radial basis neural
network (Chen et al., 1991) has been used to express
the nodes on the input layer of the genetic neuro-
fuzzy system. Furthermore, the least mean squared
learning algorithm has been also applied. Finally, the
criterion function (Equation 8), defined as the error
function between the outputs of the genetic neuro-
fuzzy system (Yx) and the real outputs (Yi), is
intended to minimize.

N
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4 RESULTS

As it was mentioned in previous sections, vibration
signals were collected in the vessel and a signal
processing was carried out in order to extract the
information about the state of the system. In this
work, a traditional FFT was applied and the five
dominant frequencies were obtained in each
measurement. An example of a vibration
measurement is shown in Figure 3. This graph
displays a vibration measured on the Y axis.
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Figure 3. An example of vibration signal on the Y axis.

Figure 4 displays the corresponding frequency
spectrum of previous vibration. At this point is
necessary to remark that every measurement
including in this work was carried out in a real vessel
in the middle of actual journeys.

The main purpose of this work is to reach that the
exposed intelligent method allows relating the
vibration signature with the corresponding working
hours. For that reason, the five dominant frequencies
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with their corresponding amplitude FFTs were used
as input vectors to the genetic neuro-fuzzy system.
The output intelligent system would be the number of
hours of the oil separator had been running at the
moment that vibration signal was measured. With
this input-output data set, once the system has been
trained, it will be able to provide the number of hours
that it had been working.
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Figure 4. Frequency spectrum of the signal shown in Figure

Several trials were carried out with the input-
output data set in each training phase previously
explained, in order to obtain the parameters that
provide an satisfactory error value. The training
process has been developed with 70% of the data,
since the other 30% was reserved to check the
generalization capability of the algorithm. If the
genetic neuro-fuzzy system provides adequate
outputs to unknown input values (data that had not
been used in the training process), then a suitable
level of generalization has been reached.

After all training phases have been concluded, one
with a minimum error function is chosen. Figure 5
shows the results of the genetic algorithm phase.
After 12 generations, the best fitness value was quite
similar to the mean, and after 48 generations, the
average value between individuals was zero; this
means that the genetic neuro-fuzzy system has
achieved good training.
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Figure 5. Evolution of the fitness value and the average
distances between individuals.

Moreover, if more particular results were
evaluated, satisfactory parameters were obtained as
well. In this case, the genetic neuro-fuzzy system
reached a training error of 2277 h, and a
generalization error of 1872.8 h. Analyzing these
error, it could be said that are acceptable, since the on
board heavy fuel oil separators used for this work had
been working between 3196 and 12236 hours.

As a final point, a comparative table is presented
in order to ensure that the genetic algorithm reached a
suitable generalization level. Table 2 shows a
comparison between the real value of the working
hours corresponding to a separator system and the
value provided by the trained genetic neuro fuzzy
system. It is essential to highlight that the input
values used for generating this table are unknown for
the system, that is, they were not included to the
training.

Table 2. Comparison between outputs provided by the
genetic neuro-fuzzy system, and the real values of the
working hours.

Real Working Hours Working Hours Provided
by Genetic Neuro Fuzzy

3196 2776
3090 4338
3078 4231
6300 6411
12236 10145

5621 4725
6476 4996

5 CONCLUSIONS

The exposed research presents an intelligent
condition-based maintenance for heavy fuel oil
separators based on genetic neuro-fuzzy system.
Vibration measurements were carried out on board
real vessels with the purpose of to relating these
vibrations and the internal state of the separation
systems. The collected data were processed in order to
obtain their characteristic parameters. In this work, a
Fast Fourier Transform allowed for extracting the
frequency domains of the separator vibrations and
their corresponding amplitudes. This packet of data

was used as input set for the training algorithm. Each
input vector was fixed with the number of working
hours that each fuel oil separator had been running
for until the measurement moment.

Once the training process has been finished, it is
possible to conclude that there is a vibration signature
capable of providing useful information in order to
preventing damages. This is because of there is a
relationship between vibration and the internal state,
and, therefore, a trained system can indicate the
number of working hours that the system have been
running for. The fact that a monitoring and a trained
system are included presents an advance over the
traditional ~preventive scheduled maintenance.
Whereas the preventive maintenance is carried out
when a certain number of hours has been achieved,
the proposed method can indicate whether it is
possible to extend the next maintenance service if the
separator is healthy, or if it is required to execute
maintenance ahead of time if any failure indications
are shown. This potential is an advantage to
shipowners, since it can prevent breaks or delay a
revision, and consequently, it would involve an
economic improvement.
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