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An analytical solution of an MHD free convective thermal diffusive flow of a viscous, incompressible, 
electrically conducting and heat-absorbing fluid past a infinite vertical permeable porous plate in the presence of 
radiation and chemical reaction is presented. The flow is considered under the influence of a magnetic field 
applied normal to the flow. The plate is assumed to move with a constant velocity in the direction of fluid flow in 
slip flow regime, while free stream velocity is assumed to follow the exponentially increasing small perturbation 
law. The velocity, temperature, concentration, skin friction, Nusselt number and Sherwood number distributions 
are derived and have shown through graphs and tables by using the simple perturbation technique. 
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1. Introduction 
 
 Free convection arises in the fluids when temperature changes cause density variation leading to 
buoyancy forces acting on the fluid elements. The most common example of free convection is the 
atmospheric flow which is driven by temperature differences. Sometimes the flow is also affected by the 
differences in temperature. This type of flow has applications in many branches of science and engineering. 
The study of such a flow under the influence of a magnetic field has attracted the interest of many 
investigators in view of its application in MHD generators, plasma studies, and nuclear reactors. Hydro-
magnetic heat and mass transfer by natural convection from a permeable surface embedded in a fluid 
saturated porous medium was studied by Chamkha [1-3]. The fluid under consideration occurs in some 
chemical reactions, e.g. air and benzene react chemically, so does water and sulphuric acid. During such 
chemical reactions, there is always generation of heat. Combining heat and mass transfer problems with a 
chemical reaction have importance in many processes and have therefore received a considerable amount of 
attention in recent years. In many chemical engineering processes chemical reactions take place between a 
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foreign mass and working fluid which moves due to the stretch of a surface. The order of chemical reactions 
depends on several factors. One of the simplest chemical reactions is the first- order reaction in which the 
rate of the reaction is directly proportional to the species concentration. Chemical reactions can be codified 
as either heterogeneous or homogenous processes. In most cases of chemical reactions the reaction rate 
depends on the concentration of the species itself. If the rate of reaction is directly proportional to the 
concentration, then the reaction is said to be a homogeneous reaction. The analysis of the nonlinear MHD 
flow with heat and mass transfer characteristics of an incompressible, viscous, electrically conducting, and 
Boussinesq’s fluid on a vertical stretching surface with a chemical reaction and thermal stratification effects 
was made by Kandasamy et al. [4]. The heat and mass transfer characteristics of the natural convection about 
a vertical surface embedded in a saturated porous medium subjected to a chemical reaction taking into 
account the Soret and Dufour effect were analyzed by Postelnicu [5]. Hossain [6] studied the effect of 
radiation on free convection from a porous vertical plate. Ibrahim et al. [7] investigated the effect of the 
chemical reaction and radiation/absorption on the unsteady MHD free convection flow past a semi-infinite 
vertical permeable moving plate with the heat source and suction. In many practical applications, the particle 
adjacent to a solid surface no longer takes the velocity of the surface. The particle at the surface has a finite 
tangential velocity; it “slips” along the surface. The flow regime is called the slip flow regime and this effect 
cannot be neglected. Using these assumptions, Sharma and Chaudary [8] discussed the free convection flow 
past a vertical plate in slip-flow regime and also discussed the free convection flow past a vertical plate in 
slip-flow regime and also discussed its various applications for engineering purposes. Also, Sharma [9] 
investigated the effect of periodic heat and mass transfer on the unsteady free convection flow past a vertical 
flat plate in slip-flow regime when suction velocity oscillates in time. Coupled non-linear partial differential 
equations governing the free convection flow, heat and mass transfer have been obtained analytically using 
the perturbation technique. The fluids considered in this investigation are air (Pr = 0.71) and water (Pr = 7) in 
the presence of hydrogen (Sc = 0.22). Magneto hydro-dynamic convective heat and mass transfer in a 
boundary layer slip flow past a vertical permeable plate with thermal radiation and chemical reaction were 
investigated by Pal and Talukdar [10]. Kumar et al. [11] studied the fluctuating flow of an elastic-viscous 
stratified fluid through a porous medium past an infinite rigid plane in slip flow regime in the presence of a 
transverse magnetic field. Muthukumaraswamy [12] studied the heat and mass transfer effects on a moving 
vertical plate in the presence of thermal radiation. Gupta and Sharma [13], Sing et al. [14-16] studied an 
MHD flow through a porous medium in slip regime. Recently, Jaiswal and Soundalgekar [17] discussed the 
flow past an infinite vertical plate oscillating in its plane in the presence of a temperature gradient dependent 
heat source. While Taneja and Jain [18] presented a theoretical analysis for an unsteady free convection flow 
with radiation in slip flow regime. Yamamoto and Yoshidha [19] studied flow with convective acceleration 
through a porous medium considering suction and injection. Flow through a plane porous wall and 
generalization of this study was presented by Yamamoto and Iwamura [20]. Raju et al. [21-23] analyzed the 
MHD natural convection flow through a porous medium in the presence of thermal diffusion, radiation and 
Soret effects. Kim et al. [24] studied unsteady MHD convective heat transfer flow past a semi-infinite 
vertical porous moving plate with variable suction. Daniel et al. [25] discussed thermally driven shallow 
cavity flows in a porous medium for the intermediate regime and merged layer regime respectively. The 
object of the present paper is to study the unsteady MHD  free convection flow of a viscous fluid past a 
vertical porous plate embedded in a porous medium in the presence of chemical reaction. In obtaining the 
solution, the terms containing the radiation effect, temperature gradient dependent heat source are taken into 
account in the energy equation and chemical reaction. The permeability of the porous medium and the 
suction velocity are considered to be an exponentially decreasing function of time. 
 
2. Mathematical formulation 
 
 We consider a two-dimensional unsteady free  convection flow of  an incompressible viscous fluid 
past an infinite vertical porous plate. In rectangular Cartesian coordinate system, we take the x-axis along the 
plate in the direction of flow and the y-axis normal to it. Further, the flow is considered in the presence of 
temperature gradient dependent heat source. In the analysis, the magnetic Reynolds number is taken to be 
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small so that the induced magnetic field is neglected. Likewise for small velocity, the viscous dissipation and 
Darcy’s dissipation are neglected. The flow in the medium is entirely due to the buoyancy force caused by a 
temperature difference between the porous plate and the fluid. Under the above assumptions, the equations 
governing the conservation of mass (continuity), momentum, energy and concentration can be written as 
follows. 
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 The boundary conditions relevant to the problem are 
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 The equation of continuity (2.1) yields that v  is either a constant or some function of time, hence we 
assume that  
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ov U 1 e      .                                                                                                       (2.6) 

 
 The negative sign indicates that the suction velocity acts towards the plate. Consider the fluid which 
is optically thin with a relatively low density and the radioactive heat flux is given by Eq.(3.14) as follows 
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 The permeability of the porous medium in a non-dimensional form is considered as  
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 Now we introduce the following non-dimensional quantities  
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 Introducing Eqs (2.6), (2.7), (2.8) in Eqs (2.2), (2.3), (2.4),we obtain 
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and boundary conditions (2.5) reduce to  
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3. Solution of the problem 
 

 To solve the partial differential Eqs (2.9), (2.10) and (2.11), we reduce them into ordinary 
differential equations. To obtain the solution we follow the procedure given by Gersten and Gross. Therefore 
the expressions for velocity, temperature and concentration are assumed in the following form. 
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 Substituting the above expressions (3.1) in to Eqs (2.9), (2.10), (2.11) and equating the coefficient 

of 0 , 1  (neglecting 2  terms etc.,), we obtain the following set of ordinary differential equations 
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 Equations (3.2) to (3.7) are second order linear differential equations with constant coefficients. The 
solutions of these paired equations under the corresponding boundary conditions (3.8) are 
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 Introducing Eqs (3.9) to (3.14) in Eqs (3.1), we get the expressions for velocity, temperature and 
concentration as  
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Skin friction 
 
 The expression for the skin-friction (  ) at the plate is 
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Rate of heat transfer 
 
 The expression for the rate of heat transfer in terms of the Nusselt number (Nu) is 
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Rate of mass transfer 
 
 The expression for the rate of heat transfer in terms of the Sherwood number (Sh) is 
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4. Results and discussion  
 
 To assess the physical depth of the problem, the effects of various parameters such as the slip 
parameter h, Grashof number Gr, magnetic parameter M, permeability of porous medium K, heat source 
parameter H, radiation parameter R, chemical reaction parameter Kr, modified Grashof number Gm and 
Schimidt number Sc on velocity distribution, temperature distribution and concentration distribution are 
studied in Figs 1 to 10, while keeping the other parameters as constants. Figure 1 depicts the velocity profiles 
with the variations in h, it is observed that the significance of the velocity is high near the plate and thereafter 
it decreases and reaches to the stationery position at the other side of the plate. As expected the velocity 
increases with an increase in h. The effects of Gr on the velocity distribution are presented in Fig.2. In Fig.3 
the velocity increases as Gm increases. From this figure it is noticed that the velocity increases with an 
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increase in Gm. In Fig.4 the effects of M on the velocity are shown. From this figure it is noticed that 
velocity decreases as M increases. The applied magnetic field acts as Lorentz’s force which drags the 
velocity. In Fig.5 the velocity increases as K increases. In Figs 6 and 9 it is observed that the temperature 
decreases as R and Pr increases. From Fig.7 it is observed that the temperature decreases as Sc increases. 
Similarly, in the Fig.8 the concentration decreases as Kc increase respectively, and in Fig.10 the 
concentration increases with an increase in So. 
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Fig.1. Effects of slip parameter (h) on velocity. 
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                                          Fig.2. Effects of the Grashof number (Gr) on velocity. 
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Fig.3. Effects of modified Grashof number (Gm) on velocity. 
 

Fig.3.Effects of Magnetic parmeter (M) on velocity 
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Fig.4. Effects of magnetic parameter (M) on velocity. 
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Fig.5. Effects of permeability parameter (K) on velocity. 
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Fig.6. Effects of radiation parameter (R) on temperature. 
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Fig.7. Effects of Schmidt number (Sc)on concentration. 
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Fig.8. Effects of chemical reaction parameter (Kr) on concentration. 
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Fig.9. Effect of the Prandtl number (Pr) on temperature. 
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Fig.10. Effects of the Soret number (So) on concentration. 
 
5. Conclusions 
 
 The velocity increases with an increase in the slip parameter, Grashof number, modified Grashof 

number, permeability of porous medium and it shows a reverse effect with an increase in the magnetic 
parameter. 

 The temperature decreases with an increase in the radiation parameter and the Prandtl number. 
 The concentration decreases with an increase in the Schmidt number and chemical reaction 

parameter and shows a reverse effect with an increase in the Soret effect. 
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Nomenclature 
 
 a  constant 
 C  concentration 
 Cp  specific heat at constant pressure 
 D  molecular diffusivity 
 D1  thermal diffusivity 
 Df  Dufour number 
 Gm  modified Grashof number 
 Gr  Grashof number 
 g  acceleration due to gravity 
 K  porosity parameter 
 PK   permeability of the medium 

 Kr  chemical reaction parameter 
 k  thermal diffusivity 
 M  magnetic parameter 
 Nu  Nusselt number 
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 Pr  Prandtl number 
 Q  heat absorption parameter 
 R  radiation parameter 
 Sc  Schmidt number 
 Sh  Sherwood number 
 So  Soret number 
 t  time 
 u  velocity of the fluid 
 y  coordinate axis normal to the plate 
 β  volumetric coefficient of thermal expansion 

    volumetric coefficient of concentration expansion 

    temperature 
 μ  coefficient of viscosity 
 ν  kinematic viscosity 
 ρ  density of the fluid 
 σ  electrical conductivity 
 τ  skin friction 
    radiation absorption parameter 
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