Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The efficiency of talc mechanical activation by means of two different mechano-activators - centrifugal and attrition mill is investigated in this study and the comparative analysis of the characteristics of obtained talc powders is presented. A new approach for obtaining high-grade talc concentrate with low Fe2O3 content is achieved through effect of mechanical activation of talc accompanied by hydrometallurgical process. The applied mechanical activation process conditions of ultra-centrifugal mill were defined by number of rotor revolutions, sieve mesh size, and current intensity. These operating parameters of the ultra-centrifugal mill were variable. Ultra fine grinding of talc in attrition mill (attritor) was carried out in various time intervals - from 5 to 15 min. The following technological parameters of the mechanical activation were monitored: time of mechanical activation, circumferential rotor speed, capacity of ultra-centrifugal mill, and specific energy consumption. The investigation was based on a kinetic model. The structure and behavior of activated samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, and differential thermal analysis (DTA).
Rocznik
Tom
Strony
433--452
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Institute for Technology of Nuclear and Other Mineral Raw Materials, Franchet d’Esperey 86, Belgrade, Serbia
autor
- Institute for Materials Testing, Vojvode Misica Blv. 43, Belgrade, Serbia
autor
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegy st. 4, Belgrade, Serbia
autor
- Institute for Technology of Nuclear and Other Mineral Raw Materials, Franchet d’Esperey 86, Belgrade, Serbia
autor
- Institute for Technology of Nuclear and Other Mineral Raw Materials, Franchet d’Esperey 86, Belgrade, Serbia
Bibliografia
- 1. ANDRIC, LJ, MILOŠEVIC, V., PETROV, M., MIHAJLOVIC, S., 2005, Operating Technique of Mills in the process of Micronization Milling of Alumina, J. Mining and Metallurgy 41A, 27–43.
- 2. BALAZ P. 2003, Mechanical activation in hydrometallurgy, Int. J. Miner. Process. 72, 341– 354.
- 3. CHO H., LEE H., LEE Y., 2006, Some breakage characteristics of ultra-fine wet grinding with a centrifugal mill, Inter. J. of Min. Process. 78, 250–261.
- 4. HAUG T.A., KLEIV R.A., MUNZ I.A., 2010, Investigating dissolution of mechanically activated olivine for carbonation purposes, Applied Geochem. 25, 1547–1563.
- 5. HEINICKE G., 1984, Tribochemistry, first ed., Academie-Verlag, Berlin.
- 6. INOUE T., OKAYA K., 1996, Grinding mechanism of centrifugal mills – a simulation study based on the discrete element method, Int. J. Miner. Process. 44–45, 425–435.
- 7. INOUE T., OKAYA K., OWADA S., HOMMA T, 2010, Development of a centrifugal mill a chain of simulation, equipment design and model validation, Powder Technology. 105, 342–350
- 8. LEE H., CHO H., KWON J., 2010, Using the discrete element method to analyze the breakage rate in a centrifugal/vibration mill, Powder Technology 198, 364–372
- 9. MAHADI M.I., PALANIANDY S., 2010, Mechanochemical effect of dolomitic talc during fine grinding process in mortar grinder, Int. J. Miner. Process. 94,172–179.
- 10. MAHMOODIAN, R., HASSAN, M.A., RAHBARI, R.G., YAHYA, R., HAMDI, M., 2013, A novel fabrication method for TiC–Al2O3–Fe functional material under centrifugal acceleration, Composites: Part B 50,187–192.
- 11. NEESSE TH., SCHAAFF F., TIEFEL H., 2004, High performance attrition in stirred mills, Minerals Engineering 17, 1163–1167.
- 12. OCEPEK D., 1976, Mehanska procesna tehnika, first ed. D.D.U., Ljubljana (in Serbian).
- 13. PEREZ-MAQUEDA L.A., DURAN A., PEREZ-RODRIGUEZ J.L, 2006, Preparation of submicron talc particles by sonication, Appl. Clay Sci. 28, 245–255.
- 14. PIGA L., MARRUZZO G., 1992, Preconcentration of Italian talc by magnetic separation and attrition, Int. J. of Min. Process. 35, 291–297.
- 15. SANCHEZ-SOTO P.J., WIEWIORA A., AVILES M.A., JUSTO A., PEREZ-MAQUEDA L.A., PEREZ-RODRIGUEZ J.L., BYLINA P., 1997, Talc from Puebla de Lillo, Spain. II. Effect of dry grinding on particle size and shape, App. Clay Sci. 12, 297–312.
- 16. SCHAAFF F, SCHNEIDER M., NEEGE TH., 1999, Intensifying the attrition of mineral waste in stirrer mills, Int. J. Miner. Process. 74S, S291–S298.
- 17. SENNA M., 2010, Finest grinding and mechanical activation for advanced materials, 7th European Symposium on Comminution, Ljubljana, 21–37.
- 18. SHINOHARA K., GOLMAN B., UCHIYAMA T., OTANI M., 1999, Fine-grinding characteristics of hard materials by attrition mill, Powder Technology 103, 292–296.
- 19. SHRIVASTAVA A., SAKTHIVEL S., PITCHUMANI B., RATHORE A.S., 2011, A statistical approach for estimation of significant variables in wet attrition milling, Powder Tech. 211, 46–53.
- 20. TAVANGARIAN F., EMADI R., SHAFYEI A., 2010, Influence of mechanical activation and thermal treatment time on nanoparticle forsterite formation mechanism, Powder Techn. 198, 412–416.
- 21. TAVANGARIAN F., EMADI R., 2011, Effects of mechanical activation and chlorine ion on nanoparticle forsterite formation, Materials Letters 65,126–129.
- 22. www.geminibv.nl/labware/retsch-zm1-grinder, Gemini BV, Netherlands
- 23. www.airclassify.com/
- 24. YANG H., DU C., HU Y., JIN S., YANG W., TANG A., AVVAKUMOV E.G., 2006, Preparation of porous material from talc by mechanochemical treatment and subsequent leaching, App. Clay Sci. 31 (2006) 290–297.
- 25. YEKELER M., ULUSOY U., HICYILMAZ C., 2004, Effect of particle shape and roughness of talc mineral ground by different mills on the wettability and floatability, Powder Tech. 140, 68–78.
- 26. YVON J., VILLIERAS F., MICHOT L., 2005, Effect of Different Dry Grinding Procedures on the Immersion Heat of Talc and Chlorite, J. Mining and Metallurgy 41A, 1–9.
- 27. ZHANG Y, LI X., PAN L., WEI Y, LIANG X, 2010, Effect of mechanical activation on the kinetics of extracting indium from indium-bearing zinc ferrite, Hydrometallurgy 102, 95–100.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43a53ad1-27d6-4149-bf0d-b459583edfef