Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Orbital angular momentum due to modes interference

Treść / Zawartość
Warianty tytułu
Języki publikacji
We present generalized expressions to calculate the orbital angular momentum for invariant beams using scalars potentials. The solutions can be separated into transversal electric TE, transversal magnetic TM and transversal electromagnetic TE/TM polarization modes. We show that the superposition of non-paraxial vectorial beams with axial symmetry can provide a well-defined orbital angular momentum and that the modes superposition affects the angular momentum flux density. The results are illustrated and analyzed for Bessel beams.
Opis fizyczny
Bibliogr. 65 poz., rys.
  • School of Computational Sciences, Korea Institute for Advanced Study, KIAS, 85 Hoegiro, Seoul 02455, Republic of Korea
  • Instituto Nacional de Astrofisica Optica y Electronica, INAOE, Luis Enrique Erro 1, Santa María Tonantzintla, Puebla, México 72840
  • [1] ALLEN L., BEIJERSBERGEN M.W., SPREEUW R.J.C., WOERDMAN J.P., Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes, Physical Review A 45(11), 1992, pp. 8185–1889, DOI:10.1103/PhysRevA.45.8185.
  • [2] YAO A.M., PADGETT M.J., Orbital angular momentum: origins, behavior and applications, Advancesin Optics and Photonics 3(2), 2011, pp. 161–204, DOI:10.1364/AOP.3.000161.
  • [3] PADGETT M.J., Orbital angular momentum 25 years on, Optics Express 25(10), 2017, pp. 11265–11274, DOI:10.1364/OE.25.011265.
  • [4] KERBER R.M., FITZGERALD J.M., REITER D.E., OH S.S., HESS O., Reading the orbital angular momentum of light using plasmonic nanoantennas, ACS Photonics 4(4), 2017, pp. 891–896, DOI:10.1021/acsphotonics.6b00980.
  • [5] WILLNER A.E., HUANG H., YAN Y., REN Y., AHMED N., XIE G., BAO C., LI L., CAO Y., ZHAO Z., WANG J., LAVERY M.P.J., TUR M., RAMACHANDRAN S., MOLISCH A.F., ASHRAFI N., ASHRAFI S., Optical communications using orbital angular momentum beams, Advances in Optics and Photonics 7(1), 2015, pp. 66–106, DOI:10.1364/AOP.7.000066.
  • [6] VOLKE-SEPULVEDA K., LEY-KOO E., General construction and connections of vector propagation invariant optical fields: TE and TM modes and polarization states, Journal of Optics A: Pure and Applied Optics 8(10), 2006, pp. 867–877, DOI:10.1088/1464-4258/8/10/008.
  • [7] VOLKE-SEPULVEDA K., GARCES-CHAVEZ S., CHAVEZ-CERDA S., ARLT J., DHOLAKIA K., Orbital angular momentum of a high-order Bessel light beam, Journal of Optics B: Quantum and Semiclassical Optics 4(2), 2002, pp. S82–S89, DOI:10.1088/1464-4266/4/2/373.
  • [8] FLORES-PÉREZ A., HERNÁNDEZ-HERNÁNDEZ J., JÁUREGUI R., VOLKE-SEPÚLVEDA K., Experimental generation and analysis of first-order TE and TM Bessel modes in free space, Optics Letters 31(11), 2006, pp. 1732–1734, DOI:10.1364/OL.31.001732.
  • [9] MARSTON P.L., Scattering of a Bessel beam by a sphere, Journal of the Acoustical Society of America 121(2), 2007, pp. 753–758, DOI:10.1121/1.2404931.
  • [10] MARSTON P.L., Scattering of a Bessel beam by a sphere: II. Helicoidal case and spherical shell example, Journal of the Acoustical Society of America 124(5), 2008, pp. 2905–2910, DOI:10.1121/1.2973230.
  • [11] BELAFHAL A., CHAFIQ A., HRICHA Z., Scattering of Mathieu beams by a rigid sphere, Optics Communications 284(12), 2011, pp. 3030–3035, DOI:10.1016/j.optcom.2011.02.021.
  • [12] BELAFHAL A., EZ-ZARIY L., CHAFIQ A., NEBDI H., Analysis of the scattering far field of a nondiffracting parabolic beam by a rigid sphere, Physical and Chemical News 60, 2011, pp. 15–21.
  • [13] SHOORIAN H., Scattering of linearly polarized Bessel beams by dielectric spheres, Journal of Quantitative Spectroscopy and Radiative Transfer 199, 2017, pp. 12–19, DOI:10.1016/j.jqsrt.2017.05.020.
  • [14] RONDÓN-OJEDA I., SOTO-EGUÍBAR F., Generalized optical theorem for propagation invariant beams, Optik 137, 2017, pp. 17–24, DOI:10.1016/j.ijleo.2017.02.069.
  • [15] RAJABI M., MOJAHED A., Acoustic radiation force control: pulsating spherical carriers, Ultrasonics 83, 2018, pp. 146–156, DOI:10.1016/j.ultras.2017.06.002.
  • [16] HERNANDEZ-FIGUEROA H.E., ZAMBONI-RACHED M., RECAMI E., Non-diffracting Waves, Wiley, 2013.
  • [17] DURNIN J., Exact solutions for nondiffracting beams. I. The scalar theory, Journal of the Optical Society of America A 4(4), 1987, pp. 651–654, DOI:10.1364/JOSAA.4.000651.
  • [18] GUTIÉRREZ-VEGA J.C., ITURBE-CASTILLO M.D., CHÁVEZ-CERDA S., Alternative formulation for invariant optical fields: Mathieu beams, Optics Letters 25(20), 2000, pp. 1493–1495, DOI:10.1364/OL.25.001493.
  • [19] BANDRES M.A., GUTIÉRREZ-VEGA J.C., CHÁVEZ-CERDA S., Parabolic nondiffracting optical wavefields, Optics Letters 29(1), 2004, pp. 44–46, DOI:10.1364/OL.29.000044.
  • [20] WHITTAKER E.T., On the partial differential equations of mathematical physics, Mathematische Annalen 57(3), 1903, pp. 333–355, DOI:10.1007/BF01444290.
  • [21] NIETO VESPERINAS M., Scattering and Diffraction in Physical Optics, Wiley, New York 1991.
  • [22] BOUCHAL Z., Nondiffracting optical beams: physical properties, experiments, and applications, Czechoslovak Journal of Physics 53(7), 2003, pp. 537–578, DOI:10.1023/A:1024802801048.
  • [23] FAHRBACH F.O., ROHRBACH A., Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media, Nature Communications 3, 2012, article 632, DOI:10.1038/ncomms1646.
  • [24] OLARTE O.E., ANDILLA J., GUALDA E.J., LOZA-ALVAREZ P., Light-sheet microscopy: a tutorial, Advances in Optics and Photonics 10(1), 2018, pp. 111–179, DOI:10.1364/AOP.10.000111.
  • [25] ASOUBAR D., ZHANG S., WYROWSKI F., KUHN M., Parabasal field decomposition and its application to non-paraxial propagation, Optics Express 20(21), 2012, pp. 23502–23517, DOI:10.1364/OE.20.023502.
  • [26] ZHANG S., HELLMANN C., WYROWSKI F., Algorithm for the propagation of electromagnetic fields through etalons and crystals, Applied Optics 56(15), 2017, pp. 4566–4576, DOI:10.1364/AO.56.004566.
  • [27] NOVITSKY A., DING W., WANG M., GAO D., LAVRINENKO A.V., QIU C.W., Pulling cylindrical particles using a soft-nonparaxial tractor beam, Scientific Reports 7, 2017, article 652, DOI:10.1038/s41598-017-00735-2.
  • [28] BRANDAO P.A., Nonparaxial TE and TM vector beams with well-defined orbital angular momentum, Optics Letters 37(5), 2012, pp. 909–911, DOI:10.1364/OL.37.000909.
  • [29] RONDON-OJEDA I., SOTO-EGUIBAR F., Electromagnetic field theory for invariant beams using scalar potentials, Progress in Electromagnetic Research B 66, 2016, pp. 49–61, DOI:10.2528/PIERB15123102.
  • [30] NOVITSKY A.V., NOVITSKY D.V., Negative propagation of vector Bessel beams, Journal of the Optical Society of America A 24(9), 2007, pp. 2844–2849, DOI:10.1364/JOSAA.24.002844.
  • [31] CHEN J., NG J., LIN Z., CHAN C.T., Optical pulling force, Nature Photonics 5, 2011, pp. 531–534, DOI:10.1038/nphoton.2011.153.
  • [32] COSTA J.T., SILVEIRINHA M.G., ALÙ A., Poynting vector negative-index metamaterials, Physical Review B 83(16), 2011, article 165120, DOI:10.1103/PhysRevB.83.165120.
  • [33] NOVITSKY A., QIU C.W., WANG H., Single gradientless light beam drags particles as tractor beams, Physical Review Letters 107(20), 2011, article 203601, DOI:10.1103/PhysRevLett.107.203601.
  • [34] QIU C.W., PALIMA D., NOVITSKY A., GAO D., DING W., ZHUKOVSKY S.V., GLUCKSTAD J., Engineering light-matter interaction for emerging optical manipulation applications, Nanophotonics 3(3), 2014, pp. 181–201, DOI:10.1515/nanoph-2013-0055.
  • [35] SALEM M.A., BAGCI H., Energy flow characteristics of vector X-Waves, Optics Express 19(9), 2011, pp. 8526–8532, DOI:10.1364/OE.19.008526.
  • [36] SUKHOV S., DOGARIU A., On the concept of “tractor beams”, Optics Letters 35(22), 2010, pp. 3847–3849, DOI:10.1364/OL.35.003847.
  • [37] RONDON-OJEDA I., SOTO-EGUIBAR F., Properties of the Poynting vector for invariant beams: negative propagation in Weber beams, Wave Motion 78, 2018, pp. 176–184, DOI:10.1016/j.wavemoti.2018.02.003.
  • [38] CHEN J., WAN C., ZHAN Q., Vectorial optical fields: recent advances and future prospects, Science Bulletin 63(1), 2018, pp. 54–74, DOI:10.1016/j.scib.2017.12.014.
  • [39] GARCIA-GRACIA H., PEREZ-GARCIA B., LOPEZ-MAGO D., HERNANDEZ-ARANDA R.I., GUTIÉRREZ-VEGA J.C., Measurement of orbital angular momentum with an off-axis superposition of vector modes, Journal of Optics 16(4), 2014, article 045702, DOI:10.1088/2040-8978/16/4/045702.
  • [40] ORNIGOTTI M., CONTI C., SZAMEIT A., Effect of orbital angular momentum on nondiffracting ultrashort optical pulses, Physical Review Letters 115(10), 2015, article 100401, DOI:10.1103/PhysRevLett.115.100401.
  • [41] BEKSHAEV A.Y., BLIOKH K.Y., NORI F., Transverse spin and momentum in two-wave interference, Physical Review X 5(1), 2015, article 011039, DOI:10.1103/PhysRevX.5.011039.
  • [42] LI M., YAN S., LIANG Y., ZHANG P., YAO B., Spinning of particles in optical double-vortex beams, Journal of Optics 20(2), 2018, article 025401, DOI:10.1088/2040-8986/aaa0e9.
  • [43] LITVIN I.A., DUDLEY A., FORBES A., Poynting vector and orbital angular momentum density of superpositions of Bessel beams, Optics Express 19(18), 2011, pp. 16760–16771, DOI:10.1364/OE.19.016760.
  • [44] FANG L., WANG J., Optical angular momentum derivation and evolution from vector field superposition, Optics Express 25(19), 2017, pp. 23364–23375, DOI:10.1364/OE.25.023364.
  • [45] STRATTON J.A., Electromagnetic Theory, McGraw-Hill, 1941.
  • [46] BOYER C.P., KALNINS E.G., MILLER W., Symmetry and separation of variables for the Helmholtz and Laplace equations, Nagoya Mathematical Journal 60, 1976, pp. 35–80, DOI:10.1017/S0027763000017165.
  • [47] JACKSON J.D., Classic Electrodynamics, Third Edition, Wiley, 1999.
  • [48] BAJER J., HORÁK R., Nondiffractive fields, Physical Review E 54(3), 1996, pp. 3052–3054, DOI:10.1103/PhysRevE.54.3052.
  • [49] MILONNI P.W., BOYD R.W., Momentum of light in a dielectric medium, Advances in Optics and Photonics 2(4), 2010, pp. 519–553, DOI:10.1364/AOP.2.000519.
  • [50] MENDEZ G., FERNANDEZ-VAZQUEZ A., PAEZ LOPEZ R., Orbital angular momentum and highly efficient holographic generation of nondiffractive TE and TM vector beams, Optics Communications 334, 2015, pp. 174–183, DOI:10.1016/j.optcom.2014.08.004.
  • [51] MCGLOIN D., GARCÉS-CHÁVEZ V., DHOLAKIA, K., Interfering Bessel beams for optical micromanipulation, Optics Letters 28(8), 2003, pp. 657–659, DOI:10.1364/OL.28.000657.
  • [52] MAZILU M., STEVENSON D.J., GUNN-MOORE F., DHOLAKIA K., Light beats the spread: “non-diffracting” beams, Laser & Photonics Reviews 4(4), 2010, pp. 529–547, DOI:10.1002/lpor.200910019.
  • [53] ZHAO C., Practical guide to the realization of a convertible optical trapping system, Optics Express 25(3), 2017, pp. 2496–2510, DOI:10.1364/OE.25.002496.
  • [54] ORNIGOTTI M., AIELLO A., Radially and azimuthally polarized nonparaxial Bessel beams made simple, Optics Express 21(13), 2013, pp. 15530–15537, DOI:10.1364/OE.21.015530.
  • [55] KOTLYAR V.V., KOVALEV A.A., Hermite–Gaussian modal laser beams with orbital angular momentum, Journal of the Optical Society of America A 31(2), 2014, pp. 274–282, DOI:10.1364/JOSAA.31.000274.
  • [56] WANG Y., CHEN Y., ZHANG Y., CHEN H., YU S., Generalised Hermite–Gaussian beams and mode transformations, Journal of Optics 18(5), 2016, article 055001, DOI:10.1088/2040-8978/18/5/055001.
  • [57] ABRAMOWITZ M., Handbook of Mathematical Functions, Dover Publications, New York 1974.
  • [58] ANGELSKY O.V., BEKSHAEV A.Y., MAKSIMYAK P.P., MAKSIMYAK A.P., HANSON S.G., ZENKOVA C.Y., Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams, Optics Express 20(4), 2012, pp. 3563–3571, DOI:10.1364/OE.20.003563.
  • [59] ANGELSKY O.V., BEKSHAEV A.Y., MAKSIMYAK P.P., MAKSIMYAK A.P., MOKHUN I.I., HANSON S.G., ZENKOVA C.Y., TYURIN A.V., Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow, Optics Express 20(10), 2012, pp. 11351–11356, DOI:10.1364/OE.20.011351.
  • [60] MITRI F.G., Superposition of nonparaxial vectorial complex-source spherically focused beams: axial Poynting singularity and reverse propagation, Physical Review A 94(2), 2016, article 023801, DOI:10.1103/PhysRevA.94.023801.
  • [61] MITRI F.G., Reverse propagation and negative angular momentum density flux of an optical nondiffracting nonparaxial fractional Bessel vortex beam of progressive waves, Journal of the Optical Society of America A 33(9), 2016, pp. 1661–1667, DOI:10.1364/JOSAA.33.001661.
  • [62] ALEKSANYAN A., BRASSELET E., Spin–orbit photonic interaction engineering of Bessel beams, Optica 3(2), 2016, pp. 167–174, DOI:10.1364/OPTICA.3.000167.
  • [63] BLIOKH K.Y., NORI F., Transverse and longitudinal angular momenta of light, Physics Reports 592, 2015, pp. 1–38, DOI:10.1016/j.physrep.2015.06.003.
  • [64] BLIOKH K.Y., ALONSO M.A., OSTROVSKAYA E.A., AIELLO A., Angular momenta and spin-orbit interaction of nonparaxial light in free space, Physical Review A 82(6), 2010, article 063825, DOI:10.1103/PhysRevA.82.063825.
  • [65] BLIOKH K.Y., IVANOV I.P., GUZZINATI G., CLARK L., VAN BOXEM R., BÉCHÉ A., JUCHTMANS R., ALONSOM.A., SCHATTSCHNEIDER P., NORI F., VERBEECK J., Theory and applications of free-electron vortex states, Physics Reports 690, 2017, pp. 1–70, DOI:10.1016/j.physrep.2017.05.006.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.