PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dihydrochalkony jako naturalna alternatywa dla obecnie stosowanych słodzików

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Dihydrochalcones as a natural alternative to currently used sweeteners
Języki publikacji
PL
Abstrakty
EN
The craving for sweets is a universal desire that connects people of all ages and cultures. Traditionally used sweeteners based on sugars, such as sucrose or glucose-fructose syrup, are known for their multidirectional negative impact on human health. With the development of research into artificial sweeteners and natural sucrose alternatives, more and more consumers are turning to healthier options to satisfy their sweet tooth. Among the potential new sweeteners of natural origin, dihydrochalcones deserve special attention. These compounds belong to polyphenols and are present in plants. In the daily diet of people, their source may be citrus fruits, strawberries and apples. Dihydrochalcones, like other polyphenols, have a high and diverse health-promoting effect, e.g. antioxidant, antimicrobial or anticancer. Unfortunately, their extraction from plant material is challenging and economically unprofitable. The article presents a brief description of traditionally used sweeteners based on sugar, as well as alternative sweeteners. Methods for the chemical synthesis of dihydrochalcones are presented here, and the biotransformation processes involved in producing these sweet-tasting compounds are discussed.
Rocznik
Strony
479--507
Opis fizyczny
Bibliogr. 103 poz., rys.
Twórcy
  • Uniwersytet Przyrodniczy we Wrocławiu, Wydział Biotechnologii i Nauk o Żywności, Katedra Chemii Żywności i Biokatalizy, ul. C. K. Norwida 25, 50-375 Wrocław
  • Uniwersytet Przyrodniczy we Wrocławiu, Wydział Biotechnologii i Nauk o Żywności, Katedra Chemii Żywności i Biokatalizy, ul. C. K. Norwida 25, 50-375 Wrocław
autor
  • Uniwersytet Przyrodniczy we Wrocławiu, Wydział Biotechnologii i Nauk o Żywności, Katedra Chemii Żywności i Biokatalizy, ul. C. K. Norwida 25, 50-375 Wrocław
  • Uniwersytet Przyrodniczy we Wrocławiu, Wydział Biotechnologii i Nauk o Żywności, Katedra Chemii Żywności i Biokatalizy, ul. C. K. Norwida 25, 50-375 Wrocław
  • Uniwersytet Przyrodniczy we Wrocławiu, Wydział Biotechnologii i Nauk o Żywności, Katedra Chemii Żywności i Biokatalizy, ul. C. K. Norwida 25, 50-375 Wrocław
Bibliografia
  • [1] F. Hutteau et al., Food Chem, 1998, 63, 9.
  • [2] A. Drewnowski et al., Journal of Nutrition, 2012, 142, 1142S.
  • [3] G. Eggleston, Chemistry’s Role in Food Production and Sustainability: Past and Present. American Chemical Society, 2019, 1314.
  • [4] F.R. Bornet, Am J Clin Nutr, 1994, 59, 763S.
  • [5] U. Świerczek, A. Borowiecka, J. Feder-Kubis, Zywnosc. Nauka. Technologia. Jakosc/Food. Science Technology. Quality, 2016, 4, 15.
  • [6] X. Qi, R.F. Tester, Mol Nutr Food Res, 2020, 64, 1901082.
  • [7] L. Kłosiewicz-Latoszek, B. Cybulska, Probl Hig Epidemiol, 2011, 92, 181.
  • [8] X. Li et al., Front Nutr, 2022, 9, 1013310.
  • [9] M.A. Febbraio, M. Karin, Cell Metab, 2021, 33, 2316.
  • [10] M.A. Herman, M.J. Birnbaum, Cell Metab, 2021, 33, 2329.
  • [11] Y. Wu et al., Cell Metab, 2022, 34, 1042.
  • [12] J.J. DiNicolantonio et al., Prog Cardiovasc Dis, 2018, 61, 3.
  • [13] M.A. Payant, M.J. Chee, Neurosci Biobehav Rev, 2021, 128, 346.
  • [14] J.A. Welsh, S.A. Cunningham, Pediatr Clin North Am, 2011, 58, 1455.
  • [15] F. Gomez-Pinilla, R.P. Cipolat, L.F.F. Royes, Biochim Biophys Acta Mol Basis Dis, 2021, 1867.
  • [16] D. de F. Lelis et al., Life Sci, 2020, 259.
  • [17] L. Sukiasyan, Curr Probl Cardiol, 2023, 48.
  • [18] A. Pepin, K.L. Stanhope, P. Imbeault, Nutrients, 2019, 11.
  • [19] H. Jiang et al., Journal of Genetics and Genomics, 2021, 48, 531.
  • [20] S.N. Jayasinghe et al., Nutrients, 2017, 9, 750.
  • [21] C. Fitch, K.S. Keim, J Acad Nutr Diet, 2012, 112, 739.
  • [22] D.R. Reed, T. Tanaka, A.H. Mcdaniel, Physiol Behav., 2006, 88, 215.
  • [23] A. Shil et al., Nutrients, 2020, 12, 1862.
  • [24] L. Hough, Low-Calorie Foods and Food Ingredients. Low-Calorie Foods and Food Ingredients, Springer, Boston, MA, 1993.
  • [25] A.A. Alsunni, Int J Gen Med, 2020, 13, 775.
  • [26] A.R. Basson, A. Rodriguez-Palacios, F. Cominelli, Front Nutr, 2021, 8, 746247.
  • [27] M.-J. Gwak et al., Food Sci Biotechnol, 2012, 21, 889.
  • [28] Kroger Manfred, Meister Kathleen, Kava Ruth, Compr Rev Food Sci Food Saf, 2006, 5, 35.
  • [29] M. Michelle Reyes, S.A. Gravina, J.E. Hayes, Chem Senses, 2019, 44, 571.
  • [30] A. Koszowska et al., Nowa Medycyna, 2014, 1, 36.
  • [31] D. Storey et al., Eur J Clin Nutr, 2007, 61, 349.
  • [32] B.N. Paulino et al., Curr Opin Food Sci, 2021, 41, 36.
  • [33] P. Liang et al., Biotechnol Adv, 2023, 64, 108105.
  • [34] E. Winkelhausen, S. Kuzmanova, J Ferment Bioeng, 1998, 86, 1.
  • [35] D. Umai et al., Frontiers in Sustainability, 2022, 3, 826190.
  • [36] Cronin Joseph R., Alternative & Complementary Therapies, 2004, 9, 139.
  • [37] S.A. Hutchinson, G.S. Ho, C.-T. Ho, Food Reviews International, 1999, 15, 249.
  • [38] M. Kwon et al., Nutrients, 2022, 14, 1087.
  • [39] Sękalska Beata, Żywność. Nauka. Technologia. Jakość., 2007, 3, 127.
  • [40] M. Grembecka, Rocz Panstw Zakl Hig, 2015, 66, 195.
  • [41] M. Carocho, P. Morales, I.C.F.R. Ferreira, Food and Chemical Toxicology, 2017, 107, 302.
  • [42] K. Świąder et al., Journal of Applied Botany and Food Quality, 2019, 92, 160.
  • [43] A.C. Sylvetsky, K.I. Rother, Physiol Behav, 2016, 164, 446.
  • [44] K.R. Tandel, J Pharmacol Pharmacother, 2011, 2, 236.
  • [45] Whitehouse Christina R., Boullata Joseph, McCauley Linda, AAOHN J., 2008, 56, 251.
  • [46] M. Soffritti et al., Environ Health Perspect, 2007, 115, 1293.
  • [47] K. Büchner et al., Foods, 2022, 11, 2734.
  • [48] A. Mukherjee, J. Chakrabartit, Food and Chemical Toxicology, 1997, 35, 1177.
  • [49] J. Grupińska et al., Bromatologia i Chemia Toksykologiczna, 2015, 48, 1.
  • [50] J. Myszkowska-Ryciak et al., Kosmos Problemy Nauk Biologicznych Polskie Towarzystwo Przyrodników im. Kopernika, 2010, 59, 365.
  • [51] H. Emamat et al., EXCLI J, 2020, 19, 620.
  • [52] C. Debras et al., BMJ, 2022, 378, e071204.
  • [53] L. Liu et al., Food Sci Nutr, 2021, 9, 4589.
  • [54] J. Shearer, S.E. Swithers, Rev Endocr Metab Disord, 2016, 17, 179.
  • [55] W. Dan, J. Dai, Eur J Med Chem, 2020, 187, 111980.
  • [56] T. Janeczko, W. Gładkowski, E. Kostrzewa-Susłow, J Mol Catal B Enzym, 2013, 98, 55.
  • [57] H. ur Rashid et al., Bioorg Chem, 2019, 87, 335.
  • [58] D.K. Mahapatra, S.K. Bharti, Life Sci, 2016, 148, 154.
  • [59] E. Karimi-Sales, G. Mohaddes, M.R. Alipour, Pharmacol Res, 2018, 129, 177.
  • [60] G.E. Inglett et al., J Food Sci, 1969, 34, 101.
  • [61] R.M. Horowitz, B. Gentiti, 1963.
  • [62] Wang Yili et al., 2015.
  • [63] C. Rivière, in Studies in Natural Products Chemistry, Elsevier B.V., 2016, 51, 253.
  • [64] M. Stompor, D. Broda, A. Bajek-Bil, Molecules, 2019, 24, 4468.
  • [65] DuBois Grant E. et al., J. Agric. Food Chem., 1977, 25, 763.
  • [66] X. Shi et al., J Funct Foods, 2022, 95, 105184.
  • [67] M. Younes et al., EFSA Journal, 2022, 20, 7595.
  • [68] M.G. Lindley, Advances in Sweeteners. Springer, Boston, MA, 1996.
  • [69] Z. Xiao et al., Food Chem, 2017, 231, 324.
  • [70] S.L. Rodríguez De Luna, R.E. Ramírez-Garza, S.O. Serna Saldívar, Scientific World Journal, 2020, 2020, 6792069.
  • [71] K. Ramirez-Estrada et al., Molecules, 2016, 21, 182.
  • [72] P. Chen, W. Li, Y. Wang, Catal Commun, 2019, 125, 10.
  • [73] M. Łużny et al., Molecules, 2019, 24, 1.
  • [74] A. Briot et al., Journal of Organic Chemistry, 2004, 69, 1374.
  • [75] S.J. Chen, G.P. Lu, C. Cai, RSC Adv, 2015, 5, 13208.
  • [76] F.A. Khan, A. Vallat, G. Süss-Fink, J Mol Catal A Chem, 2012, 355, 168.
  • [77] N. Ravasio et al., Tetrahedron Lett, 1996, 37, 3529.
  • [78] M.-H. Kim et al., J Appl Biol Chem, 2007, 50, 85.
  • [79] G.P. Rosa et al., ACS Sustain Chem Eng, 2017, 5, 7467.
  • [80] C. de Carvalho, M. da Fonseca, Comprehensive Biotechnology (Second Edition), 2011, 2, 451.
  • [81] X. Liu, C. Kokare, in Biotechnology of Microbial Enzymes Production, Biocatalysis and Industrial Applications, Elsevier Inc., 2017, 267.
  • [82] Y.S. Anteneh, C.M.M. Franco, Front Microbiol, 2019, 10.
  • [83] A.J.J. Straathof, S. Panke, A. Schmid, Curr Opin Biotechnol, 2002, 13, 548.
  • [84] S. Raveendran et al., Food Technol Biotechnol, 2018, 56, 16.
  • [85] J.L. Adrio, A.L. Demain, Biomolecules, 2014, 4, 117.
  • [86] B. Lin, Y. Tao, Microb Cell Fact, 2017, 16.
  • [87] J. Ren, C.D. Barton, J. Zhan, Fitoterapia, 2022, 161, 1.
  • [88] S. Raimondi et al., J Biotechnol, 2011, 156, 279.
  • [89] B. Żyszka, M. Anioł, J. Lipok, Microb Cell Fact, 2017, 16, 136.
  • [90] J. Kozłowska et al., RSC Adv, 2018, 8, 30379.
  • [91] M. Stompor et al., J Mol Catal B Enzym, 2013, 97, 283.
  • [92] M. Stompor, M. Kałużny, B. Żarowska, Appl Microbiol Biotechnol, 2016, 100, 8371.
  • [93] E. Kostrzewa-Susłow et al., Molecules, 2017, 22, 1830.
  • [94] S. Burmaoglu et al., Bioorg Med Chem Lett, 2016, 26, 3172.
  • [95] I.L. de Matos, M. Nitschke, A.L.M. Porto, Marine Biotechnology, 2019, 21, 430.
  • [96] W. AnMing et al., Journal of Medicinal Plants Research, 2010, 4, 847.
  • [97] M.J.C. Corrêa et al., J Braz Chem Soc, 2011, 22, 1333.
  • [98] M. Dymarska et al., PLoS One, 2017, 12, e0184885.
  • [99] A. Krawczyk-Łebek et al., Int J Mol Sci, 2021, 22, 9619.
  • [100] E. Kostrzewa-Suslow, T. Janeczko, Molecules, 2012, 17, 14810.
  • [101] V.D. Silva, B.U. Stambuk, M. da G. Nascimento, J Mol Catal B Enzym, 2010, 63, 157.
  • [102] M. Łużny et al., Catalysts, 2020, 10, 1135.
  • [103] M. Łużny et al., Molecules, 2022, 27, 3681.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4394d56f-a551-4593-802d-8c9ec2f4f7d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.