PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Advanced uncertainty quantification in rainfall-intensity duration frequency curve modeling: A case study of Hilla City and surrounding regions, Iraq

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The rainfall-intensity duration frequency (IDF) relationship is mostly used in water resource engineering to plan, design, and operate water source projects and projects to manage flood dangers. Engineers must accurately calculate rainfall to design structures that effectively manage runoff collection, conveyance, and storage, as the hydrologic cycle relies on precipitation. An analysis is conducted on the annual rainfall measurements (mm) from five atmospheric observatories in Iraq (Najaf, Hilla, Kerbala, Diwaniya, and Baghdad) spanning 1989 to 2023. The objective is to determine the characteristics of the observed frequency distributions. The Gamma, Log Normal, and Normal distributions compare the data. Kolmogorov-Smirnov, Anderson-Darling, and Chi-Square are study tests. The IDF depict extreme rainfall values over 15, 30, and 60 minutes, with 5, 10, 15, and 50-year return periods. The results indicate that the Chi-Square test has the most optimal distribution among all the stations. The normal distribution was found to be the best for the years (5, 10, 15, and 50) through the IDF curves drawing of stations where the distributions were compared. Equations of Hilla station were found through an IDF equations curve to Hilla from its surrounding stations; and get the error. The result was good agreement, with a ratio Coefficient of Determination ranging from 83.2 to 94.7.
Twórcy
  • Al-Mussaib Technical Institute, Al-Furat Al-Awsat Technical University,51009 Babylon, Iraq
  • Department of Civil Engineering, College of Engineering, University of Babylon, Iraq
Bibliografia
  • 1. Akpen, G. D., Aho, M. I., & Musa, A. A. (2019). Rainfall intensity-duration-frequency models for Lokoja Metropolis, Nigeria. Global Journal of Pure and Applied Sciences, 25(1), 81–90. https://doi.org/10.4314/gjpas.v25i1.11
  • 2. Alam, F., Salam, M., Khalil, N. A., khan, O., & Khan, M. (2021). Rainfall trend analysis and weather forecast accuracy in selected parts of Khyber Pakhtunkhwa, Pakistan. SN Applied Sciences, 3, 1-14. https://doi.org/10.1007/s42452-021-04457-z
  • 3. AL-Dulaimi, M. H. A., Alfatlawi, T. J. M., & Mohammed, W. A. (2020). Developing (IDF) curves models for Babylon City and alluvial fertile zone, Iraq. Solid State Technology, 2585–2598. https://www.solidstatetechnology.us/index.php/ JSST/issue/view/50
  • 4. Bhakar, S. R., Bansal, A. K., Chhajed, N., & Purohit, R. C. (2006). Frequency analysis of consecutive days maximum rainfall at Banswara, Rajasthan, India. ARPN Journal of Engineering and Applied Sciences, 1(3), 64–67.
  • 5. Bolstad, B. M. (1998). Comparing some iterative methods of parameter estimation for censored gamma data. The University of Waikato, 55.
  • 6. Campos, J. N. B., Studart, T. M. D. C., Souza Filho, F. D. A. D., & Porto, V. C. (2020). On the rainfall intensity–duration–frequency curves, partial-area effect and the rational method: Theory and the engineering practice. Water, 12(10), 2730. https://doi.org/10.3390/w12102730
  • 7. Chow, V. T. (1964). Statistical and probability analysis of hydrologic data. Handbook of applied hydrology, 8–1.
  • 8. Cooley, D., Nychka, D., & Naveau, P. (2007). Bayesian spatial modeling of extreme precipitation return levels. Journal of the American Statistical Association, 102(479), 824–840. https://doi.org/10.1198/016214506000000780
  • 9. El Hannoun, W., Boukili Makhoukhi, A., Zoglat, A., & El Adlouni, S. E. (2023). Intensity–Duration– Frequency Curves for Dependent Datasets. Water, 15(14), 2641. https://doi.org/10.3390/w15142641
  • 10. Fadhel, S., Rico-Ramirez, M. A., & Han, D. (2017). Uncertainty of intensity–duration–frequency (IDF) curves due to varied climate baseline periods. Journal of hydrology, 547, 600–612. https://doi.org/10.1016/j.jhydrol.2017.02.013
  • 11. Ghahraman, B., & Hosseini, S. M. (2005). A new investigationon on the performance of rainfall IDF models.
  • 12. Gu, X., Ye, L., Xin, Q., Zhang, C., Zeng, F., Nerantzaki, S. D., & Papalexiou, S. M. (2022). Extreme precipitation in China: A review on statistical methods and applications. Advances in Water Resources, 163, 104144. https://doi.org/10.1016/j. advwatres.2022.104144
  • 13. Heidari, H., Arabi, M., Ghanbari, M., & Warziniack, T. (2020). A probabilistic approach for characterization of sub-annual socioeconomic drought intensity-duration-frequency (IDF) relationships in a changing environment. Water, 12(6), 1522. https://doi.org/10.3390/w12061522
  • 14. Huang, Q., Chen, Y., Xu, S., Liu, Y., & Li, X. (2010, August). Scaling models of a rainfall intensity-duration-frequency relationship. In 2010 Sixth International Conference on Natural Computation 7, 3415–3419). IEEE.
  • 15. Kourtis, I. M., & Tsihrintzis, V. A. (2022). Update of intensity-duration-frequency (IDF) curves under climate change: a review. Water Supply, 22(5), 4951–4974. https://doi.org/10.2166/ws.2022.152
  • 16. Jäntschi, L., & Bolboacă, S. D. (2018). Computation of probability associated with Anderson–Darling statistic. Mathematics, 6(6), 88. https://doi.org/10.3390/math6060088
  • 17. Kareem, D. A., M Amen, A. R., Mustafa, A., Yüce, M. I., & Szydłowski, M. (2022). Comparative analysis of developed rainfall intensity–duration– frequency curves for Erbil with other Iraqi Urban areas. Water, 14(3), 419. https://doi.org/10.3390/ w14030419
  • 18. Miller, J., Taylor, C., Guichard, F., Peyrillé, P., Vischel, T., Fowe, T.,... & Parker, D. J. (2022). High-impact weather and urban flooding in the West African Sahel–A multidisciplinary case study of the 2009 event in Ouagadougou. Weather and Climate Extremes, 36, 100462. https://doi.org/10.1016/j.wace.2022.100462
  • 19. Noor, M., Ismail, T., Shahid, S., Asaduzzaman, M., & Dewan, A. (2021). Evaluating intensity-duration-frequency (IDF) curves of satellite-based precipitation datasets in Peninsular Malaysia. Atmospheric Research, 248, 105203. https://doi.org/10.1016/j.atmosres.2020.105203
  • 20. Pecho, J., Faško, P., Lapin, M., & Gaál, L. (2009, April). Analysis of rainfall intensity-duration-frequency relationships in Slovakia (estimation of extreme rainfall return periods). In EGU General Assembly Conference Abstracts, 11240.
  • 21. Reder, A., Raffa, M., Padulano, R., Rianna, G., & Mercogliano, P. (2022). Characterizing extreme values of precipitation at very high resolution: An experiment over twenty European cities. Weather and Climate Extremes, 35, 100407. https://doi.org/10.1016/j.wace.2022.100407
  • 22. Sane, Y., Panthou, G., Bodian, A., Vischel, T., Lebel, T., Dacosta, H.,... & Diop Kane, M. (2018). Intensity–duration–frequency (IDF) rainfall curves in Senegal. Natural Hazards and Earth System Sciences, 18(7), 1849–1866.
  • 23. Schlef, K. E., Kunkel, K. E., Brown, C., Demissie, Y., Lettenmaier, D. P., Wagner, A.,... & Yan, E. (2023). Incorporating non-stationarity from climate change into rainfall frequency and intensity-duration-frequency (IDF) curves. Journal of Hydrology, 616, 128757. https://doi.org/10.1016/j. jhydrol.2022.128757
  • 24. Shamkhi, M. S., Azeez, M. K., & Obeid, Z. H. (2022). Deriving rainfall intensity–duration–frequency (IDF) curves and testing the best distribution using EasyFit software 5.5 for Kut city, Iraq. Open Engineering, 12(1), 834–843. https://doi.org/10.1515/eng-2022-0330
  • 25. Silva, D. F., Simonovic, S. P., Schardong, A., & Goldenfum, J. A. (2021). Assessment of non-stationary IDF curves under a changing climate: Case study of different climatic zones in Canada. Journal of Hydrology: Regional Studies, 36, 100870.
  • 26. Takara, K., & Takasao, T. (1988). Criteria for evaluating probability distribution models in hydrologic frequency analysis. Doboku Gakkai Ronbunshu, 393, 151–160.
  • 27. Wambua, R. M. (2019). Estimating rainfall intensity-duration-frequency (IDF) curves for a tropical river basin.
  • 28. Yüksek, Ö., Anılan, T., Saka, F., & Orgun, E. (2022). Rainfall intensity-duration-frequency analysis in Turkey, with the emphasis of Eastern Black Sea basin. Teknik Dergi, 33(4), 12087–12103. https://doi.org/10.18400/tekderg.727085
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-438b4576-80f9-46c7-8539-d8a709c053d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.