Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The samples of the CuCr0.6 alloy in the solution treated and additionally in aging states were severely plastically deformed by compression with oscillatory torsion (COT) method to produce ultrafine – grained structure. The samples were processed by using process parameters as: frequency of torsion (f = 1.6 Hz), compression speed (v = 0.04 mm/s), angle torsion (α = ±6°), height reduction (Δh = 7 mm). The total effective strain was εft = 40. The microstructure has been analyzed by scanning transmission electron microscope (STEM) Hitachi HD-2300A equipped with a cold field emission gun at an accelerating voltage of 200 kV. The quantitative microstructure investigations as disorientation angles were performed using a FEI INSPECT F scanning electron microscope (SEM) equipped with a cold field emission gun and a electron backscattering diffraction (EBSD) detector. The mechanical properties were determined using MST QTest/10 machine equipped with digital image correlation (DIC). The COT processed alloy previously aged at 500°C per 2h shows high mechanical strength, ultimate tensile strength UTS: 521 MPa and yield tensile strength YS: 488 MP attributed to the high density of coherent precipitates and ultrafine grained structure.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
2061--2066
Opis fizyczny
Bibliogr. 25 poz., fot., rys., tab., wykr.
Twórcy
autor
- Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, 8 Krasińskiego Str., 40-019 Katowice, Poland
autor
- Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, 8 Krasińskiego Str., 40-019 Katowice, Poland
autor
- Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, 8 Krasińskiego Str., 40-019 Katowice, Poland
Bibliografia
- [1] L. Kommel, A. Pokatilov, IOP Conf. Ser. Mater. Sci. Eng. 63, (2014). DOI: 10.1088/1757-899X/63/1/012169
- [2] M. Kawasaki, H. J. Lee, J. Il Jang, T. G. Langdon, Rev. Adv. Mater. Sci. 48, 13-24 (2017).
- [3] I. Sabirov, M. Y. Murashkin, R. Z. Valiev, Mater. Sci. Eng. A 560, 1-24 (2013). DOI: 10.1016/j.msea.2012.09.020
- [4] D. V. Shangina, N. R. Bochvar, M. V. Gorshenkov, H. Yanar, G. Purcek, S. V. Dobatkin, Mater. Sci. Eng. A 650, 63-66 (2016). DOI: 10.1016/J.MSEA.2015.10.008
- [5] A. Vinogradov, Y. Suzuki, T. Ishida, K. Kitagawa, V. I. Kopylov, Mater. Trans. 45, 2187-2191 (2004). DOI: 10.2320/matertrans.45.2187
- [6] R.Z.V.R.K. Islamgaliev, K. M. Nesterov, J. Bourgon, Y. Champion, J. Appl. Physic 115, 194301-194304 (2014).
- [7] P. Bazarnik, M. Lewandowska, M. Andrzejczuk, K. J. Kurzydlowski, Mater. Sci. Eng. A 556, 134-139 (2012). DOI: 10.1016/J.MSEA.2012.06.068
- [8] N. Liang, J. Liu, S. Lin, Y. Wang, J. T. Wang, Y. Zhao, Y. Zhu, J. Alloys Compd. 735, 1389-1394 (2018). DOI: 10.1016/J.JALLCOM.2017.11.309
- [9] Z. Rdzawski, J. Stobrawa, W. Głuchowski, J. Sobota, Arch. Metall. Mater. 59, (2014). DOI: 10.2478/amm-2014-0106
- [10] K. X. Wei, W. Wei, F. Wang, Q. B. Du, I. V. Alexandrov, J. Hu, Mater. Sci. Eng. A 528, 1478–1484 (2011). DOI: 10.1016/j.msea.2010.10.059
- [11] W. Głuchowski, J. Domagała-Dubiel, J. Sobota, J. Stobrawa, Z. Rdzawski, Arch. Mater. Sci. Eng. 60, 53-63 (2013).
- [12] K. Rodak, A. Brzezińska, R. Molak, Mater. Sci. Eng. A (2018). DOI: 10.1016/j.msea.2018.03.077
- [13] K. Rodak, A. Urbańczyk-Gucwa, M. B. Jabłońska, Arch. Civ. Mech. Eng. 18, (2018). DOI: 10.1016/j.acme.2017.07.001
- [14] A. Vinogradov, T. Ishida, K. Kitagawa, V. I. Kopylov, Acta Mater. 53, 2181-2192 (2005). DOI: 10.1016/J.ACTAMAT.2005.01.046
- [15] P. L. Sun, C. Y. Yu, P. W. Kao, C. P. Chang, Scr. Mater. 47, 377-381 (2002). DOI: 10.1016/S1359-6462(02)00117-3
- [16] Bochniak W., Korbel A., Mater. Sci. Technol. 16, 664-674 (2000).
- [17] M. Lewandowska, Oficyna Wydawnictwa Politechniki Warszawskiej, (2006)
- [18] K. Rodak, J. Pawlicki, J. Mater. Sci. Technol. 27, 1083-1088 (2011). DOI: 10.1016/S1005-0302(11)60190-4
- [19] P. Z. Rodak K., Molak R. M., Phys. Status Solidi C-Curent Top. Solid State Phys. 7, 1351-1354 (2010).
- [20] Z. Cyganek, K. Rodak, F. Grosman, Arch. Civ. Mech. Eng. 13, 7-13 (2013). DOI: 10.1016/J.ACME.2012.10.008
- [21] Patent no. PL 203220 B1, b.d.
- [22] Z. M. Rdzawski, J. Stobrawa, W. Głuchowski, J. Achiev. Mater. Manuf. Eng. 33, 7-18 (2009).
- [23] H. Cao, J. Y. Min, S. D. Wu, A. P. Xian, J. K. Shang, Mater. Sci. Eng. A 431, 86-91 (2006). DOI: 10.1016/J.MSEA.2006.05.081
- [24] J. Szala, Computer Quantitative Metallography: MET-ILO V.3.0., Department, Silesian Univeristy of Technology, 1997.
- [25] S. V. Dobatkin, J. Gubicza, D. V. Shangina, N. R. Bochvar, N. Y. Tabachkova, Matt. Lett. 153, 5-9 (2015). DOI: 10.1016/j.matlet.2015.03.144
Uwagi
EN
The work was supported by the National Science Centre of Poland (project No. UMO-2013/09/B/ST8/01695).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43868766-0c6a-43cb-87bf-93ac38266ca8