PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Student review of innovations in quantum technologies. Part 5

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the paper is to show how graduated engineering students in classical ICT view practically the advent of the QIT. The students do their theses in El. Eng. and ICT and were asked how to implement now or in the future the QIT in their current or future work. Most of them have strictly defined research topics and in some cases the realization stage is advanced. Thus, most of the potential QIT application areas are defined and quite n arrow. I n such a case, the issue to be considered is the incorporation of QIT components and interfaces into the existing ICT infrastructure, software and hardware alike, and propose a solution as a reasonable functional hybrid system. The QIT components or circuits are not standalone in most cases, they should be somehow incorporated into existing environment, with a measurable added value. Not an easy task indeed. We have to excuse the students if the proposed solutions are not ripe enough. The exercise was proposed as an on-purpose publication workshop, related strictly to the fast and fascinating development of the QIT. The paper is a continuation of publishing exercises with previous groups of students participating in QIT lectures.
Twórcy
  • Warsaw University of Technology
  • Warsaw University of Technology
  • Warsaw University of Technology
  • Warsaw University of Technology
autor
  • Warsaw University of Technology
  • Warsaw University of Technology
  • Warsaw University of Technology
  • Warsaw University of Technology
  • Warsaw University of Technology
autor
  • Warsaw University of Technology
  • Warsaw University of Technology
Bibliografia
  • [1] A. Twarowska, J. Wietczak, K. Szydłowski, M. Kaczmarczyk, M. Kaczkowski, O. Pawlak, B. Mastej, M. Stranz, K. Hacaś, B. Sweklej, and R. Romaniuk, “Students’ view of quantum information technologies, part 3,” International Journal of Electronics and Telecommunications, vol. 70, pp. 509-518, 05 2024.
  • [2] F. Mańka, K. Klekowiecka, M. Kowalczyk, U. Wardzyńska, E. Borkowska, M. Kłodnicki, R. Łuszczyński, T. Żarnovsky, K. Hacaś, and R. Romaniuk, “Students’ view of quantum information technologies, part 4,” International Journal of Electronics and Telecommunications, pp. 215-215, 04 2025.
  • [3] M. Wojtkowski, M. Bartoszewski, W. Buchwald, K. Joachimczyk, A. Kawala, and R. Romaniuk, “Students’ view of quantum information technologies, part 2,” International Journal of Electronics and Telecommunications, vol. 70, pp. 241-246, 03 2024.
  • [4] M. Kowalczyk, U. Wardzyńska, E. Borkowska, K. Klekowiecka, M. Kłodnicki, R. Łuszczyński, F. Mańka, T. Żarnovsky, K. Hacaś, and R. Romaniuk, “Students’ view of quantum information technologies, part 4,” International Journal of Electronics and Telecommunications, vol. 71, pp. 209-218, 03 2025.
  • [5] A. Paler and S. J. Devitt, “An introduction to fault-tolerant quantum computing,” 2015.
  • [6] Quantum Internet Alliance, “Quantum internet alliance,” https://quantuminternetalliance.org , 2023, accessed: 2025-05-14.
  • [7] P. Bonate, “A brief introduction to monte carlo simulation,” Clinical pharmacokinetics, vol. 40, pp. 15-22, 02 2001.
  • [8] N. Kawashima, “Quantum monte carlo methods,” Progress of Theoretical Physics Supplement, vol. 145, pp. 138-149, 02 2002.
  • [9] M. Liu, R. Shaydulin, P. Niroula, M. DeCross, S.-H. Hung, W. Y. Kon, E. Cervero-Martín, K. Chakraborty, O. Amer, S. Aaronson, A. Acharya, Y. Alexeev, K. Berg, S. Chakrabarti, F. Curchod, J. Dreiling, N. Erickson, C. Foltz, M. Foss-Feig, and M. Pistoia, “Certified randomness using a trapped-ion quantum processor,” Nature, vol. 640, pp. 343-348, 03 2025.
  • [10] A. Chella, S. Gaglio, M. Mannone, G. Pilato, V. Seidita, F. Vella, and S. Zammuto, “Quantum planning for swarm robotics,” Robotics and Autonomous Systems, vol. 161, p. 104362, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0921889023000015
  • [11] F. Khoshnoud, M. B. Quadrelli, I. I. Esat, and D. Robinson, “Quantum cooperative robotics and autonomy,” 2020. [Online]. Available: https://arxiv.org/abs/2008.12230
  • [12] M. Mannone, V. Seidita, and A. Chella, “Modeling and designing a robotic swarm: A quantum computing approach,” Swarm and Evolutionary Computation, vol. 79, p. 101297, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2210650223000706
  • [13] Aoe, Michiyasu, Matsuoka, and Shikata, “Case study for calculation of factor x (eco-efficiency)-comparing crt tv, pdp tv and lcd tv,” in 2003 EcoDesign 3rd International Symposium on Environmentally Conscious Design and Inverse Manufacturing. IEEE, 2003, pp. 650-655.
  • [14] E. Jang, “Environmentally friendly quantum dots for display applications,” in 2018 IEEE International Electron Devices Meeting (IEDM). IEEE, 2018, pp. 38-2.
  • [15] Y. Huang, E.-L. Hsiang, M.-Y. Deng, and S.-T. Wu, “Mini-led, micro-led and oled displays: present status and future perspectives,” Light: Science & Applications, vol. 9, no. 1, p. 105, 2020.
  • [16] T. M. Smeeton, E. Angioni, E. A. Boardman, M. Izumi, N. Iwata, Y. Nakanishi, and T. Ishida, “54-1: invited paper: development of electroluminescent qdled displays,” in SID Symposium Digest of Technical Papers, vol. 50, no. 1. Wiley Online Library, 2019, pp. 742-745.
  • [17] R. Mertens, “Microled displays: Industry status and roadmap,” Inform. Display, vol. 40, pp. 5-8, 2024.
  • [18] C. Hotz and J. Yurek, “Quantum dot-enabled displays,” Advanced Display Technology: Next Generation Self-Emitting Displays, pp. 229-250, 2021.
  • [19] E. Boldbaatar, D. Grant, S. Choy, S. Zaminpardaz, and L. Holden, “Evaluating optical clock performance for gnss positioning,” Sensors, vol. 23, no. 13, 2023.
  • [20] B. Carmans, S. Achten, M. Aydogan, S. Bammens, Y. Beerden, D. Hendrikx, J. Gorissen, T. Koseoglu, J. Mannaerts, R. Vandebosch, S. Vandervoort, S. Vanspauwen, M. Nesladek, and J. Hruby, “Oscarqube: student made diamond based quantum magnetic field sensor for space applications,” 04 2022.
  • [21] T. Lévèque, C. Fallet, J. Lefebve, A. Piquereau, A. Gauguet, B. Battelier, P. Bouyer, N. Gaaloul, M. Lachmann, B. Piest, E. Rasel, J. Müller, C. Schubert, Q. Beaufils, and F. P. D. Santos, “Carioqa: Definition of a quantum pathfinder mission,” 2022. [Online]. Available: https://arxiv.org/abs/2211.01215
  • [22] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for linear systems of equations,” Physical Review Letters, vol. 103, no. 15, Oct. 2009. [Online]. Available: http://dx.doi.org/10.1103/PhysRevLett. 103.150502
  • [23] A. M. Childs, R. Kothari, and R. D. Somma, “Quantum algorithm for systems of linear equations with exponentially improved dependence on precision,” SIAM Journal on Computing, vol. 46, no. 6, p. 1920-1950, Jan. 2017. [Online]. Available: http://dx.doi.org/10.1137/16M1087072
  • [24] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, “Simulating hamiltonian dynamics with a truncated taylor series,” Physical Review Letters, vol. 114, no. 9, Mar. 2015. [Online]. Available: http://dx.doi.org/10.1103/PhysRevLett.114.090502
  • [25] G. H. Low and I. L. Chuang, “Hamiltonian simulation by qubitization,” Quantum, vol. 3, p. 163, Jul. 2019. [Online]. Available: http://dx.doi.org/10.22331/q-2019-07-12-163
  • [26] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, and P. J. Coles, “Variational quantum linear solver,” Quantum, vol. 7, p. 1188, Nov. 2023. [Online]. Available: http://dx.doi.org/10.22331/q-2023-11-22-1188
  • [27] M. Lubasch, J. Joo, P. Moinier, M. Kiffner, and D. Jaksch, “Variational quantum algorithms for nonlinear problems,” Physical Review A, vol. 101, no. 1, Jan. 2020. [Online]. Available: http://dx.doi.org/10.1103/PhysRevA.101.010301
  • [28] G. Panichi, S. Corli, and E. Prati, “Quantum physics informed neural networks for multi-variable partial differential equations,” 2025. [Online]. Available: https://arxiv.org/abs/2503.12244
  • [29] W. Paul, “Electromagnetic traps for charged and neutral particles,” Nobel Lecture, 1989. [Online]. Available: https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.62.531
  • [30] R. Blatt and D. J. Wineland, “Entangled states of trapped atomic ions,” Nature, vol. 453, pp. 1008-1015, 2008. [Online]. Available: https://doi.org/10.1038/nature07125
  • [31] G.-Z. Li, S. Guan, and A. G. Marshall, “Comparison of equilibrium ion density distribution and trapping force in penning, paul, and combined ion traps,” Journal of the American Society for Mass Spectrometry, vol. 9, no. 5, pp. 473-481, 1998. [Online]. Available: https://doi.org/10.1016/S1044-0305(98)00005-1
  • [32] S. Jain, T. Sägesser, P. Hrmo, C. Torkzaban, M. Stadler, R. Oswald, C. Axline, A. Bautista-Salvador, C. Ospelkaus, D. Kienzler, and J. Home, “Penning micro-trap for quantum computing,” Nature, vol. 627, pp. 510-517, 2024. [Online]. Available: https://doi.org/10.1038/s41586-024-07111-x
  • [33] F. R. C.L. Degen and P. Cappellaro, “Quantum sensing,” Reviews of Modern Physics, vol. 89, no. 3, p. 035002, 2017. [Online]. Available: https://doi.org/10.1103/RevModPhys.89.035002
  • [34] S. Neil, “Quantum diamond sensors,” Nature, vol. 591, no. 7851, pp. S37-S37, 2021. [Online]. Available: https://doi.org/10.1038/d41586-021-00742-4
  • [35] V. I. J. V. J. H. G. M. E. B. A. G. M. T. M. N. Michal Gulka, Daniel Wirtitsch, “Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins,” Nature, vol. 12, no. 1, p. 4421, 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-24494-x
  • [36] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 439, p. 553-558, 1992. [Online]. Available: https://royalsocietypublishing.org/doi/10.1098/rspa.1992.0167
  • [37] C. M. R. Cleve, A. Ekert and M. Mosca, “Quantum algorithms revisited,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 454, pp. 339-354, 1998. [Online]. Available: https://royalsocietypublishing.org/doi/10.1098/rspa.1998.0164
  • [38] D. Perri, M. Simonetti, O. Gervasi, and S. Tasso, “Chapter 4 - high-performance computing and computational intelligence applications with a multi-chaos perspective,” in Multi-Chaos, Fractal and Multi-Fractional Artificial Intelligence of Different Complex Systems, Y. Karaca, D. Baleanu, Y.-D. Zhang, O. Gervasi, and M. Moonis, Eds. Academic Press, 2022, pp. 55-76. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780323900324000109
  • [39] A. M. Childs, R. Kothari, Y. Li, and N. Wiebe, “Quantum algorithms for solving linear differential equations,” arXiv preprint arXiv:1701.03684, 2017. [Online]. Available: https://arxiv.org/abs/1701.03684
  • [40] H. Wang, S. Xu, and H. Hu, “Pid controller for pmsm speed control based on improved quantum genetic algorithm optimization,” IEEE Access, vol. 11, pp. 61 091-61 102, 2023.
  • [41] “Advances in quantum radar and quantum lidar,” Progress in Quantum Electronics, vol. 93, p. 100497, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0079672723000460
  • [42] M. Abe et al., “Long-baseline quantum sensor network as dark matter haloscope,” Nature Communications, vol. 15, p. 3026, 2024. [Online]. Available: https://www.nature.com/articles/s41467-024-47566-0
  • [43] C. Zhan and H. Gupta, “Quantum sensor network algorithms for transmitter localization,” arXiv preprint arXiv:2211.02260, 2022. [Online]. Available: https://arxiv.org/pdf/2211.02260.pdf
  • [44] M. Hillery et al., “Discrete outcome quantum sensor networks,” Physical Review A, vol. 107, p. 012435, 2023. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.107.012435
  • [45] H. Hainzer et al., “Correlation spectroscopy with multiqubit-enhanced phase estimation,” Physical Review X, vol. 14, p. 011033, 2024. [Online]. Available: https://phys.org/news/2024-03-spectroscopy-network-quantum-sensors-boosts.html
  • [46] T. Proctor et al., “Networked quantum sensing,” arXiv preprint arXiv:1702.04271, 2017. [Online]. Available: https://arxiv.org/abs/1702.04271
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4385b713-bfde-49b6-8184-0bb0a1421501
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.