Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In order to guarantee the accuracy of turntable angle measurement, a real-time compensation method for turntable positioning precision based on harmonic analysis is proposed in this paper. Firstly, the principle and feasibility of the real-time compensation method are analysed, and a detailed description of harmonic compensation is provided herein. Secondly, we analyse the relationships between the surface number of the polygon with the compensation order of the harmonic function and its corresponding compensation accuracy. The effects of the iterations number and the data width on calculation accuracy in the coordinate rotation digital computer (CORDIC) algorithm are analysed and the quantization models of the approximation error and rounding error of the CORDIC algorithm are established. Then, the calculation of the harmonic error function and real-time compensation processes are implemented on a field programmable gate array (FPGA) chip. The resource occupation and time delay of the phase angle calculation and the harmonic component calculation are discussed separately. Finally, the validity of the harmonic compensation method is proven through comparing the compensation effect with that of linear interpolation and the polynomial compensation method. The influences of the compensation order, the iterations number and the data width on the compensation results are demonstrated by simulation. A test platform with a laboratory-made FPGA circuit is built to evaluate the effect of real-time compensation with the harmonic function and the positioning error compensation can be performed within 760 ns. The results confirmed the effectiveness of the harmonic compensation method, revealing an improvement of the positioning precision from 54.21ʹʹ to 1.63ʹʹ, equivalent to 96.99% reduction in positioning error.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
553--571
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr., wzory
Twórcy
autor
- China Jiliang University, School of Measurement and Testing Engineering, Hangzhou, 310018, China
autor
- China Jiliang University, School of Measurement and Testing Engineering, Hangzhou, 310018, China
autor
- China Jiliang University, School of Measurement and Testing Engineering, Hangzhou, 310018, China
autor
- Zhejiang University, College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Hangzhou 310027, China
- National Institute of Metrology, Beijing, 100029, China
autor
- National Institute of Metrology, Beijing, 100029, China
autor
- National Institute of Metrology, Beijing, 100029, China
Bibliografia
- [1] Just, A., Krause, M., Probst, R., Bosse, H., Haunerdinger, H., Spaeth, Ch., Metz, G., & Israel, W. (2009). Comparison of angle standards with the aid of a high-resolution angle encoder. Precision Engineering, 33(4), 530-533. https://doi.org/10.1016/j.precisioneng.2009.02.004
- [2] Probst, R., Wittekopf, R., Krause, M., Dangschat, H., & Ernst, A. (1998). The new PTB angle comparator. Measurement Science and Technology, 9(7), 1059-1066. http://dx.doi.org/10.1088/0957-0233/9/7/009
- [3] Watanabe, T., Fujimoto, H., Nakayama, K., Masuda, T., & Kajitani, M. (2001). Automatic high-precision calibration system for angle encoder. Lasers in Metrology and Art Conservation, Germany, 267-274. https://doi.org/10.1117/12.445630
- [4] Watanabe, T., Fujimoto, H., Nakayama, K., Masuda, T., & Kajitani, M. (2003). Automatic high-precision calibration system for angle encoder (II). Optical Science and Technology, SPIE’s 48th Annual Meeting, United States, 400-409. https://doi.org/10.1117/12.506473
- [5] Watanabe, T., Kon, M., Nabeshima, N., & Taniguchi, K. (2014). An angle encoder for super-high resolution and super-high accuracy using SelfA. Measurement Science and Technology, 25(6):065002. http://dx.doi.org/10.1088/0957-0233/25/6/065002
- [6] Huang, Y., Xue, Z., Huang, M., & Qiao, D. (2018). The NIM continuous full circle angle standard. Measurement Science and Technology, 29(7), 074013. https://doi.org/10.1088/1361-6501/aac6a6
- [7] van Eekeren, A. W., Schutte, K., Dijk, J., Schwering, P. B., van Iersel, M., & Doelman, N. J. (2012). Turbulence compensation: an overview. SPIE Defense, Security, and Sensing, United States, 83550Q. https://doi.org/10.1117/12.918544
- [8] Dhar, V., Tickoo, A., Kaul, S., Koul, R., & Dubey, B. (2009). Artificial neural network-based error compensation procedure for low-cost encoders. Measurement Science and Technology, 21(1), 015112. https://doi.org/10.1088/0957-0233/21/1/015112
- [9] Gao, G. B., Wang, W., Xie, L., Wei, D. B., & Xu, W. Q. (2011). Study on the compensation for mounting eccentric errors of circular grating angle sensors. Advanced Materials Research, 301-303, 1552-1555. https://doi.org/10.4028/www.scientific.net/AMR.301-303.1552
- [10] Lopez, J., & Artes, M. (2012). A new methodology for vibration error compensation of optical encoders. Sensors, 12(4), 4918-4933. https://doi.org/10.3390/s120404918
- [11] Yu, Y., Dai, L., Chen, M. S., Kong, L. B., Wang, C. Q., & Xue, Z. P. (2020). Calibration, Compensation and Accuracy Analysis of Circular Grating Used in Single Gimbal Control Moment Gyroscope. Sensors, 20(5), 1458. https://doi.org/10.3390/s20051458
- [12] Jia, H. K., Yu, L.D., Jiang, Y. Z., Zhao, H. N. & Cao, J. M. (2020). Compensation of rotary encoders using Fourier expansion-back propagation neural network optimized by genetic algorithm. Sensors, 20(9), 2603. https://doi.org/10.3390/s20092603
- [13] Du, Y. B., Yuan, F., Jiang, Z. Z., Li, K., Yang, S. W., Zhang, Q. B., Zhang, Y. H., Zhao, H. L., Li, Z. R. & Wang, S. L. (2021). Strategy to Decrease the Angle Measurement Error Introduced by the Use of Circular Grating in Dynamic Torque Calibration. Sensors, 21(22), 7599. https://doi.org/10.3390/s21227599
- [14] Gurauskis, D., Kilikevičius, A. & Kasparaitis, A.(2021). Thermal and Geometric Error Compensation Approach for an Optical Linear Encoder. Sensors, 21(2), 360. https://doi.org/10.3390/s21020360
- [15] Hu, Y., Zhan, Y., Han, L., Hu, P., Ye, B. & Yu, Y. (2020). An Angle Error Compensation Method Based on Harmonic Analysis for Integrated Joint Modules. Sensors, 20(6), 1715. https://doi.org/10.3390/s20061715
- [16] Zhang, G., Zhang, X. F., Wang, W. F., Cao, Y. M., & Zhao, J. (2016). Study on error compensation of angular position measurement. Journal of Test and Measurement Technology, 30(4), 353-357. https://doi.org/10.3969/j.issn.1671-7449.2016.04.012
- [17] Hu, Y. H. (1992). The quantization effects of the CORDIC algorithm. IEEE Transactions on Signal Processing, 40(4), 834-44. https://doi.org/10.1109/78.127956
Uwagi
1. This research was financially supported by the National Natural Science Foundation of China (52175526), the project of the National Key R&D Program of China (2017YFF0204901), and the research project of General Administration of Quality Supervision, Inspection and Quarantine of PRC (2016QK189).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43829810-3f88-46b6-ab6a-1e2135e2df91