PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of the Number of Constrictions on the Filtration Behaviour of a Soil-Geotextile System

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ liczby przewężeń na zachowanie się układu grunt-geowłóknina w procesie filtracji
Języki publikacji
EN
Abstrakty
EN
Nonwoven geotextile filters have been used in geo-environmental engineering for decades to prevent the movement of base soil fine particles, allowing adequate seepage to flow through the geotextile plane. Most of the design criteria developed for nonwoven geotextiles are based only on the comparison between their characteristic opening size and the indicative diameter of the soil to be filtered. In the meantime, the nonwoven geotextile fibrous structure has an influence on the filtration of the soil-geotextile system. In this paper the numbers of constrictions of nonwoven geotextile samples were determined to verify the existence of a correlation between the geotextile structure and the filtration behaviour of soil-geotextile systems. The compatibility between an internally unstable soil and a nonwoven geotextile filter was evaluated using the gradient ratio test. The results obtained can also be the basis for modifying the geotextile filter design and selection criteria.
PL
Spośród różnych materiałów geosyntetycznych, szerokie zastosowanie w systemach filtracyjnych i drenażowych znalazły geowłókniny. Zapobiegają one mieszaniu się materiałów o różnym uziarnieniu umożliwiając jednocześnie swobodny przepływ wody w kierunku prostopadłym do płaszczyzny wyrobu. Dla celów prawidłowego funkcjonowania instalacji odwadniających projektowanie geowłóknin pełniących funkcje filtracyjne sprowadza się do spełnienia trzech podstawowych kryteriów: zatrzymywania cząstek, przepuszczalności oraz odporności na kolmatację. Kryteria te głównie opierają się na porównaniu charakterystycznej wielkości porów geowłókniny z określonymi średnicami zastępczymi gruntu chronionego oraz przepuszczalności geowłókniny w kierunku prostopadłym do płaszczyzny wyrobu ze współczynnikiem filtracji gruntu. Okazuje się jednak, że także struktura geowłókniny ma wpływ na jej właściwości filtracyjne. W prezentacji zostaną przedstawione wyniki badań współczynnika proporcjonalności spadku (GR) geowłóknin o różnej liczbie przewężeń (number of constrictions) zależnej od grubości, porowatości i średnicy pojedynczego włókna materiału, w celu określenia wpływu struktury geowłókniny na jej podatność na proces kolmatacji mechanicznej.
Rocznik
Strony
87--92
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Warsaw University of Life Sciences, Faculty of Civil and Environmental Engineering, Nowoursynowska 159, 02-776 Warsaw, Poland
  • Warsaw University of Life Sciences, Faculty of Civil and Environmental Engineering, Nowoursynowska 159, 02-776 Warsaw, Poland
  • Warsaw University of Life Sciences, Faculty of Civil and Environmental Engineering, Nowoursynowska 159, 02-776 Warsaw, Poland
Bibliografia
  • 1. ISO 10318-1:2015 Geosynthetics – Part 1: Terms and definitions.
  • 2. Iryo T, Rowe RK. On the Hydraulic Behavior of Unsaturated Nonwoven Geotextiles. Geotextiles and Geomembranes 2003; 21:381-404.
  • 3. Palmeira EM, Trejos Galvis HL. Evaluation of Predictions of Nonwoven Geotextile Pore Size Distribution under Confinement. Geosynthetics International 2018; 25(2):230-241.
  • 4. Raisinghani DV, Vismanadham BVS. Evaluation of Permeability Characteristics of a Geosynthetic-Reinforced Soil through Laboratory Tests. Geotextiles and Geomembranes 2010; 28:579-588.
  • 5. Cazzuffi D, Moraci N, Mandaglio MC, Ielo D. Evolution in design of geotextile filters. Proceedings of the EuroGeo 6; 2016 September 25-28; Ljubljana, Slovenia. p. 40-63.
  • 6. Giroud, JP. Granular filters and geotextile filters. Proceedings of the GeoFilters ’96; 1996 May 29-31; Montreal, Canada. p. 565-680.
  • 7. Heibaum M. Rethinking geotextile filter design. Proceedings of the 10th International Conference on Geosynthetics; 2014 September 21-25; Berlin, Germany. p. 8.
  • 8. ISO 12956:2010 Geotextiles and geotextile-related products – Determination of the characteristic opening size.
  • 9. Junqueira FF, Silva ARL, Palmeira EM. Performance of Drainage Systems Incorporating Geosynthetics and their Effect on Leachate Properties. Geotextiles and Geomembranes 2006; 24: 311-324.
  • 10. Koda E, Szymański A, Wolski W. Behavior of Geodrains in Organic Subsoil. Proceedings of the 12th International Conference on Soil Mechanics and Foundation; 1989 August 13-18; Rio je Janeiro, Brazil. p.1377-1380.
  • 11. Lee I-M, Kim J-H, Reddi LN. Clogging Phenomena of the Residual Soil-Geotextile Filter System. Geotechnical Testing Journal 2002; 25(4):1-12.
  • 12. Lejcuś K, Dąbrowska J, Grzybowska-Pietras J, Garlikowski D, Lejcuś I, Pawłowski A, Śpitalniak M. Optimisation of Operational Parameters for Nonwoven Sheaths of Water Absorbing Geocomposites in Unsaturated Soil Conditions. FIBRES & TEXTILES in Eastern Europe 2016; 24, 3(117): 110-116. DOI: 10.5604/12303666.1196620.
  • 13. Miszkowska A, Lenart S, Koda E. Changes of Permeability of Nonwoven Geotextiles due to Clogging and Cyclic Water Flow in Laboratory Conditions. Water 2017; 9(9):660.
  • 14. Moraci N. Geotextile Filter: Design, Characterization and Factors Affecting Clogging and Blinding Limit States. Proceedings of the 9th International Conference on Geosynthetics; 2010 May 23-27; Guaruja, Brazil. p. 413-435.
  • 15. Veylon G, Stoltz G, Meriaux P, Faure Y-H, Touze-Foltz N. Performance of geotextile filters after 18 years’ service in drainage trenches. Geotextiles and Geomembranes 2016; 44:515-533.
  • 16. ASTM D 5101. Standard Test Method for Measuring the Filtration Compatibility of Soil-Geotextile Systems. ASTM International, USA.
  • 17. Calhoun C. Development of Design Criteria and Acceptance Specifications for Plastic Filter Cloths. Technical Report S-72-7 U.S. Army Corps of Engineers, Waterways Experiment Station, USA. 1972; p. 83.
  • 18. Wu Ch-S, Hong Y-S, Yan Y-W, Chang B-S. Soil-Nonwoven Geotextile Filtration Behavior under Contact with Drainage Materials. Geotextiles and Geomembranes 2006; 24:1-10.
  • 19. Fannin RJ, Vaid YP, Shi YC. A Critical Evaluation of the Gradient Ratio Test. Geotechnical Testing Journal 1994; 17:35-42.
  • 20. Haliburton TA, Wood PD. Evaluation of the U.S. Army Corps of Engineers Gradient Ratio Test for Geotextile Performance. Proceedings of the 2nd International Conference On Geotextiles; 1982 August 1-6; Las Vegas, USA. p. 97-101.
  • 21. Khan MW, Dawson AR, Marshall AM. A Dynamic Gradient Ratio Test Apparatus. Geotextiles and Geomembranes 2018; 46:782-789.
  • 22. Lafleur J, Eichenauer T, Werner G. Geotextile Filter Retention Criteria for Well Graded Cohesionless Soils. Proceedings of the GeoFilters ’96; 1996 May 29-31; Montreal, Canada. p. 429-438.
  • 23. Bouthot M, Vermeersch OG, Blond E, Mlynarek J. The Number of Constrictions Concept as a Mean to Predict the Filtration Behavior of Nonwoven Geotextile Filters. Proceedings of the 7th International Conference on Geosynthetics; 2002 September 22-27; Nice, France. p. 1061-1064.
  • 24. ASTM D 7178. Standard Practise for Determining the Number of Constrictions “m” of Non-Woven Geotextiles as a Complementary Filtration Property. ASTM International, USA.
  • 25. Pawluk K, Wrzesiński G, Lendo-Siwicka M. Strength and Numerical Analysis in the Design of Permeable Reactive Barriers. Proceedings of the World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium (WMCAUS); 2017 June 12-16; Prague, Czech Republic. Book Series: IOP Conference Series-Materials Science and Engineering, Vol. 245, Article Number: UNSP 052017.
  • 26. ISO 14688-2:2004. Geotechnical and Testing – Identification and Classification of Soil – Part 2: Principles for A Classification.
  • 27. Kenney TC, Lau D. Internal Stability of Granular Filters. Canadian Geotechnical Journal 1985; 22:215-225.
  • 28. Wojtasik D. Evaluation of Nonwoven Geotextile as a Filtration Layer For Internally Unstable Soils. Annals of Warsaw University of Life Sciences – SGGW, Land Reclamation. 2008; 40:107-114.
  • 29. Palmeira EM, Fannin RJ, Vaid YP. A Study on the Behavior of Soil-Geotextile Systems in Filtration Tests. Canadian Geotechnical Journal 1996; 33:899-912.
  • 30. Fannin RJ, Palmeira EM, Srikongsri A, Gardoni MG. Interpretation of the Gradient Ratio Test for Geotextile Filtration Design. Proceedings of the 1st Pan American Geosynthetics Conference & Exhibition; 2008 March 2-5; Cancun, Mexico. p.1699-1707.
  • 31. Kutay ME, Aydilek AH. Filtration Performance of Two-Layer Geotextile Systems. Geotechnical Testing Journal 2005; 28, No. 1:1-13.
  • 32. Miszkowska A, Krzywosz Z. Evaluation of soil-geotextile filtration behaviour using the gradient ratio test. Proceedings of the 25th International PhD Students Conference (MendelNet 2018); 2018 November 07-08; Brno, Czech Republic. p. 440-445.
  • 33. Sabiri N-E, Caylet A, Montillet A, Le Coq L, Durkheim Y. Performance of nonwoven geotextiles on soil drainage and filtration. European Journal of Environmental and Civil Engineering, 2017; 1-19.
  • 34. Wu Ch-S, Hong Y-S, Yan Y-W, Chang B-S. Soil-nonwoven geotextile filtration behavior under contact with drainage materials. Geotextiles and Geomembranes. 2006; 24: 1-10.
  • 35. Lafleur, J. A modified gradient ratio test for the filtration performance of geotextiles. Proceedings of the 6th European Geosynthetics Congress; 2016 September 25-28; Ljubljana, Slovenia. p. 697-702.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-438186f0-e613-4ec6-ac47-1c9c47af6ea8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.