PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sterilisation of nanobubble dispersions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, three methods of sterilisation are compared to determine their usability in nanobubbledispersion sterilisation: filtration, thermal sterilisation and sonication (in twosystems: using a sonotrodeand sonication bath). Nanobubble dispersions are most commonly generated in non-sterile systemswhich precludes them from use in most biological research. As a result of this study, filtration waschosen as the best method for nanobubble sterilisation.
Rocznik
Strony
69–--76
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering,Waryńskiego 1, 00-645 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering,Waryńskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering,Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Bałdyga J., Jasińska M., Dzi˛egielewska M., Żochowska M., 2018. Effect of sonication reactor geometry on cell disruption and protein release from yeast cells. Chem. Process Eng., 39, 475–489. DOI: 10.24425/cpe.2018.124973.
  • 2. Calgaroto S., Wilberg K.Q., Rubio J., 2014. On the nanobubbles interfacial properties and future applications in flotation. Miner. Eng., 60, 33–40. DOI: 10.1016/j.mineng.2014.02.002.
  • 3. Cho S.H., Kim J.Y., Chun J.H., Kim J.D., 2005. Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions. Colloids Surf., A, 269, 28–34. DOI: 10.1016/j.colsurfa.2005.06.063.
  • 4. Duval E., Adichtchev S., Sirotkin S., Mermet A., 2012. Long-lived submicrometric bubbles in very diluted alkali halide water solutions. Phys. Chem. Chem. Phys., 14, 4125. DOI: 10.1039/c2cp22858k.
  • 5. Ebina K., Shi K., Hirao M., Hashimoto J., Kawato Y., Kaneshiro S., Morimoto T., Koizumi K., Yoshikawa H., 2013. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice. PLOS ONE, 8 (6), e65339. DOI: 10.1371/journal.pone.0065339.
  • 6. Gurung A., Dahl O., Jansson K., 2016. The fundamental phenomena of nanobubbles and their behavior inwastewater treatment technologies. Geosyst. Eng., 19 (3), 133–142. DOI: 10.1080/12269328.2016.1153987.
  • 7. Kobayashi F., Hayata Y., Ikeura H., Tamaki M., Muto N., Osajima Y., 2009. Inactivation of Esherichia coli by CO2 microbubbles at a lower pressure and near room temperature. Trans ASABE, 5 2(5), 1621–1626.
  • 8. Kobayashi F., Ikeura H., Ohsato S., Goto T., Tamaki M., 2011. Disinfection using ozone microbubbles to inacti- vate Fusarium oxysporum f. sp. melonis and Pectobacterium carotovorum subsp. carotovorum. Crop Prot., 30, 1514–1518. DOI: 10.1016/j.cropro.2011.07.018.
  • 9. Li H., Hu L., Song D., Lin F., 2014. Characteristics of micro-nano bubbles and potential application in groundwater bioremediation. Water Environ. Res., 86, 844–851. DOI: 10.2175/106143014X14062131177953.
  • 10. Luu T.Q., Hong Truong P.N., Zitzmann K., Nguyen K.T., 2019. Effects of ultrafine bubbles on gram-negative bacteria: Inhibition or selection? Langmuir. DOI: 10.1021/acs.langmuir.9b02641.
  • 11. Oh S.H., Han J.G., Kim J.M., 2015. Long-term stability of hydrogen nanobubble fuel. Fuel, 158, 399–404. DOI: 10.1016/j.fuel.2015.05.072.
  • 12. Oh S.H., Kim J.M., 2017. Generation and stability of bulk nanobubbles. Langmuir, 33, 3818–3823. DOI: 10.1021/acs.langmuir.7b00510.
  • 13. Park J.S., Kurata K., 2009. Application of microbubbles to hydroponics solution promotes lettuce growth. Hort- Technology, 19, 212–215. DOI: 10.21273/HORTSCI.19.1.212.
  • 14. Riyad G., Al-Omary H., 2018. Physiological effects of carbon dioxide treatment on diabetic foot ulcer physiological effects of carbon dioxide treatment on diabetic foot ulcer patients. IOSR J. Pharm. Biol. Sci., 13 (5) 1–7. DOI: 10.9790/3008-1305040107.
  • 15. Shalan N., Al-Bazzaz A., Al-Ani I., Najem F., Al-Masri M., 2015. Effect of carbon dioxide therapy on diabetic foot ulcer. J. Diabetes Mellitus, 5, 284–289. DOI: 10.4236/jdm.2015.54035.
  • 16. Temesgen T., Bui T.T., Han M., Kim T.L, Park H., 2017. Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review. Adv. Colloid Interface Sci., 246, 40–51. DOI: 10.1016/j.cis.2017.06.011.
  • 17. Tiehm A., Nickel K., Zellhorn M., Neis U., 2001. Ultrasonic waste activated-sludge disintegration for improving anaerobic stabilization. Water Res., 35, 2003–2009. DOI: 10.1016/s0043-1354(00)00468-1.
  • 18. Tsuge H., 2015. Micro- and nanobubbles. Fundamentals and applications. Boca Raton: Pan Stanford Publishing, Boca Raton.
  • 19. Ulatowski K., Sobieszuk P., Kuźmińska A., Ciach T., 2018. Investigation of cytotoxicity of oxygen nanobubble dispersion in water. Acta Scientiarum Polonorum, 17 (2), 51–58. DOI: 10.30825/5.biot.58.2018.17.2 (in Polish).
  • 20. Ulatowski K., Sobieszuk P., Mroz A., Ciach T., 2019. Stability of nanobubbles generated in water using porous membrane system. Chem. Eng. Process. Process Intensif., 136, 62–71. DOI: 10.1016/j.cep.2018.12.010.
  • 21. Wang J.L., Xu L.J., 2012. Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application. Crit. Rev. Env. Sci. Technol., 42, 251–325. DOI: 10.1080/10643389.2010.507698.
  • 22. Zhu J., An H., Alheshibri M., Liu L., Terpstra P.M.J., Liu G., Craig V.S.J., 2016. Cleaning with bulk nanobubbles. Langmuir, 32, 11203–11211. DOI: 10.1021/acs.langmuir.6b01004.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43812b1c-fa8e-433a-bc53-db263dc3144c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.