PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phosphorus removal by microelectrolysis and sedimentation in the integrated devices

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Usuwanie fosforu przez mikroelektrolizę i sedymentację w zintegrowanych urządzeniach
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of tests performed on an installation with an aerated microelectrolytic bed (MEL-bed) and sludge sedimentation. The systems were designed in two versions, differing in the aeration method, i.e., a mechanically aerated coagulator (MAC) and an automatically aerated coagulator (AAC). The experiment demonstrated a high (approx. 84%) efficiency of phosphorus removal from a model solution for both versions. The corroding bed was the source of iron in the solution. In the initial phase aeration method affected the phosphorus removal rate, flocculation and sedimentation processes. Physical and chemical changes in the MEL-bed packing were observed.
PL
W pracy zaprezentowano wyniki testów urządzenia z napowietrzanym złożem mikroelektrolitycznym (MEL-bed) i sedymentacją osadu. Urządzenie zaprojektowano w dwóch wersjach, różniących się sposobem napowietrzania. tj.: mechanical aerated coagulator (MAC) oraz automatically aerated coagulator (AAC). Eksperyment wykazał wysoką ok. 84% skuteczność usuwania fosforu z roztworu modelowego dla obydwu wersji. Korodujące złoże było źródłem żelaza w roztworze. Sposób napowietrzania miał wpływ na szybkość usuwania fosforu w początkowej fazie trwającej do 1 h oraz na procesy flokulacji i sedymentacji. Zaobserwowano zmiany fizyczne i chemiczne wypełnienia złoża MEL-bed.
Rocznik
Strony
3--9
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Department of Chemistry, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Poland
  • Department of Chemistry, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Poland
Bibliografia
  • 1. Deng, Y., Englehardt, J.D., Abdul-Aziz, S., Bataille, T., Cueto, J., De Leon, O., Wright, M.E., Gardinali, P., Narayanan, A., Polar, J. & Tomoyuki, S. (2013). Ambient iron-mediated aeration (IMA) for water reuse, Water Research, 47, pp. 850-858, DOI: 10.1016/j. watres.2012.11.005.
  • 2. El Samrani, A.G., Lartiges, B.S., Montarges-Pelletier, E., Kazpard, V., Barres, O. & Ghanbaja, J. (2004). Clarification of municipal sewage with ferric chloride: the nature of coagulant species, Water Research, 38, pp. 756-768, DOI: 10.1016/j.watres.2003.10.002.
  • 3. Gromiec, M.J. & Gromiec, T.M. (2010). Controlling of eutrophication in aquatic environments, Journal of Water and Land Development, 14, pp. 29-35.
  • 4. Gu, A.Z., Liu, L., Neethling, J.B., Stensel, H.D. & Murthy, S. (2011). Treatability and fate of various phosphorus fractions in different wastewater treatment processes, Water Science and Technology, 63 (4), pp. 804-810, DOI: 10.2166/wst.2011.215.
  • 5. Lai, B., Zhou, Y. & Yang, P. (2012). Passivation of sponge iron and GAC in Fe0/GAC mixed-potential corrosion reactor, Industrial & Engineering Chemistry Research, 51(22), pp. 7777-7785, DOI: 10.1021/ie203019t.
  • 6. Lakshmanan, D., Clifford, D.A. & Samanta, G. (2009). Ferrous and ferric ion generation during iron electrocoagulation, Environmental Science and Technology, 43(10), pp. 3853-3859, DOI: 10.1021/es8036669.
  • 7. Li, C., Ma, J., Shen, J. & Wang, P. (2009). Removal phosphate from secondary effluent with Fe2+ enhanced by H2O2 at nature pH/ neutral pH, Journal of Hazardous Materials, 166, pp. 891-896, DOI: 10.1016/j.jhazmat.2008.11.111.
  • 8. Libecki, B. (2018) Koagulator do oczyszczania ścieków (Coagulator for wastewater treatment) Patent Application, Polish Patent Office, application No: P.426089
  • 9. Ma, L. & Zhang, W.-X. (2008). Enhanced biological treatment of industrial wastewater with bimetallic zero-valent iron, Environmental Science and Technology, 42, pp. 5384-5389, DOI: 10.1021/es801743s.
  • 10. Mak, M.S.H., & Irene, M.C. (2009). Effects of hardness and alkalinity on the removal of arsenic(V) from humic acid-deficient and humic acid-rich groundwater by zero-valent iron, Water Research, 43, pp. 4296-4304, DOI: 10.1016/j.watres.2009.06.022.
  • 11. Qin, Sh., Li, X., Zhang, T. & Ronga, W. (2011). Pretreatment of chemical cleaning wastewater by microelectrolysis process, Procedia Environmental Sciences, 10, pp. 1154-1158, DOI: 10.1016/j.proenv.2011.09.184.
  • 12. Sarin, P., Snoeyink, V.L., Lytle, D.A. & Kriven, W.M. (2004). Iron corrosion scales: model for scale growth, iron release, and colored water formation, Journal of Environmental Engineering, 4, pp. 364-373.
  • 13. Sleiman, N., Deluchat, V, Wazne, M., Mallet, M., Courtin-Nomade, A., Kazpard, V. & Baudu, M. (2016). Phosphate removal from aqueous solution using ZVI/sand bed reactor: Behavior and mechanism, Water Research, 99, pp. 56-65, DOI: 10.1016/j. watres.2016.04.054.
  • 14. Smoczyński, L., Muńska, K.T., Kosobucka, M. & Pierożyński, B. (2014). Phosphorus and COD removal from chemically coagulated wastewater, Environmental Protection Engineering, 40(3), pp. 63-73.
  • 15. Sterner, R.W. (2008). On the Phosphorus Limitation Paradigm for Lakes, International Review of Hydrobiology, 93, 4-5, pp. 433-445, DOI: 10.1002/iroh.200811068.
  • 16. Sun, Y., Li, J., Huang, T. & Guan, X. (2016). The influeces of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review, Water Research, 100, pp. 277-295, DOI: 10.1016/j. watres.2016.05.031.
  • 17. Tarkowska-Kukuryk, M. (2013). Effect of phosphorus loadings on macrophytes structure and trophic state of dam reservoir on a small lowland river (eastern Poland), Archives of Environmental Protection, 39, 3, pp. 33-46, DOI: 10.2478/aep- 2013-0029.
  • 18. Wan, W., Pepping, T.J., Banerji, T., Chaudhari, S. & Giammar, D.E. (2011). Effects of water chemistry on arsenic removal from drinking water by electrocoagulation, Water Research, 45(1), pp. 384-392, DOI: 10.1016/j.watres.2010.08.016.
  • 19. Wei, M.-Ch., Wang, K.-S., Hsiao, T.-E., Lin, I.-Ch., Wu, H.-J., Wu, Y.-L., Liu, P.-H. & Chang, S.-H. (2011). Effects of UV irradiation on humic acid removal by ozonation, Fenton and Fe0/air treatment: THMFP and biotoxicity evaluation, Journal of Hazardous Materials, 195(15) pp. 324-331, DOI: 10.1016/j. jhazmat.2011.08.044.
  • 20. Yang, X., Xue, Y. & Wang, W. (2009). Mechanism, kinetics and application studies on enhanced activated sludge by interior microelectrolysis, Bioresources Technology, 2009, 100(2), pp. 649-653, DOI: 10.1016/j.biortech.2008.07.035.
  • 21. Yang, Z., Ma, Y., Liu, Y., Li, Q., Zhou, Z. & Ren, Z. (2017). Degradation of organic pollutants in near-neutral pH solution by Fe-C micro-electrolysis system. Chemical Engineering Journal, 315, pp. 403-414, DOI: 10.1016/j.cej.2017.01.042.
  • 22. Yanhe, H., Han, L., Meili, L., Yimin, S., Cunzhen, L. & Jiaqing, Ch. (2016). Purification treatment of dyes wastewater with a novel Phosphorus removal by microelectrolysis and sedimentation in integrated devices 9 micro-electrolysis reactor, Separation and Purification Technology, 170, pp. 241-247, DOI: 10.1016/j.seppur.2016.06.058.
  • 23. Yuan, S., Wu, Ch., Wan, J. & Lu, X. (2009). In situ removal of copper from sediments by a galvanic cell, Journal of Environmental Management, 90, 421-427, DOI: 10.1016/j. jenvman.2007.10.009.
  • 24. Zou, H. & Wang, Y (2017). Optimization of induced crystallization reaction in a novel process of nutrients removal coupled with phosphorus recovery from domestic wastewater, Archives of Environmental Protection, 43(4), 33-38, DOI: 10.1515/aep-2017-0037.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43798df2-0b43-4b7c-b7e8-5f5dc36e51a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.