PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automatic scaling of critical frequency foF2 from ionograms recorded at São José dos Campos, Brazil: a comparison between Autoscala and UDIDA tools

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper considers a dataset of ionograms recorded by the CADI ionosonde installed at São José dos Campos (SJC; 23.2°S, 45.9°W, magnetic latitude 14.1°S), Brazil, to compare two autoscaling systems: Autoscala, developed by the Istituto Nazionale di Geofisica e Vulcanologia, and the UDIDA-scaling, developed by the Universidade do Vale do Paraíba. The analysis, focused on the critical frequency of the F2 layer, foF2, shows that the two systems work differently. The UDIDA-scaling gives always a value of foF2 as output, regardless of the presence of the ionogram trace and its definition, while Autoscala tends to reject ionograms for which the digital information is considered insufficient. As a consequence, the UDIDA-scaling can autoscale more foF2 values than Autoscala, but Autoscala can discard a larger number of ionograms for which the trace is unidentifiable. Discussions are made on the accuracy of the foF2 values given as output, as well as on the main shortcomings characterizing the two systems.
Czasopismo
Rocznik
Strony
173--187
Opis fizyczny
Bibliogr. 56 poz.
Twórcy
autor
  • Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
autor
  • Laboratório de Física e Astronomia Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, Brazil
Bibliografia
  • 1. Astafyeva E, Zakharenkova I, Förster M (2015) Ionospheric response to the 2015 St. Patrick’s Day storm: a global multi-instrumental overview. J Geophys Res 120(10):9023–9037. doi:10.1002/2015JA02629CrossRefGoogle Scholar
  • 2. Bamford RA, Stamper R, Cander LR (2008) A comparison between the hourly autoscaled and manually scaled characteristics from the Chilton ionosonde from 1996 to 2004. Radio Sci 43(1):RS1001. doi:10.1029/2005RS003401CrossRefGoogle Scholar
  • 3. Bullett T, Malagnini A, Pezzopane M, Scotto C (2010) Application of Autoscala to ionograms recorded by the VIPIR ionosonde. Adv Space Res 45(9):1156–1172. doi:10.1016/j.asr.2010.01.024CrossRefGoogle Scholar
  • 4. Carter BA, Yizengaw E, Pradipta R, Retterer JM, Groves K, Valladares C, Caton R, Bridgwood C, Norman R, Zhang K (2016) Global equatorial plasma bubble occurrence during the 2015 St. Patrick’s Day storm. J Geophys Res 121(1):894–905. doi:10.1002/2015JA022194CrossRefGoogle Scholar
  • 5. Chartier AT, Matsuo T, Anderson JL, Collins N, Hoar TJ, Lu G, Mitchell CN, Coster AJ, Paxton LJ, Bust GS (2016) Ionospheric data assimilation and forecasting during storms. J Geophys Res 121(1):764–778. doi:10.1002/2014JA020799CrossRefGoogle Scholar
  • 6. Chen Z, Wang S, Zhang S, Fang G, Wang J (2013) Automatic scaling of F layer from ionograms. Radio Sci 48(3):334–343. doi:10.1002/rds.20038CrossRefGoogle Scholar
  • 7. Conkright RO, McNamara LF (1997) Quality control of automatically scaled vertical incidence ionogram data. Radio Sci 32(5):1997–2002. doi:10.1029/97RS01031CrossRefGoogle Scholar
  • 8. De Michelis P, Consolini G, Tozzi R, Marcucci MF (2016) Observations of high-latitude geomagnetic field fluctuations during St. Patrick’s Day storm: Swarm and SuperDARN measurements. Earth Planets Space 68(105):1–16. doi:10.1186/s40623-016-0476-3Google Scholar
  • 9. Ding Z, Ning B, Wan W, Liu L (2007) Automatic scaling of F2-layer parameters from ionograms based on the empirical orthogonal function (EOF) analysis of ionospheric electron density. Earth Planets Space 59(1):51–58. doi:10.1186/BF03352022CrossRefGoogle Scholar
  • 10. Enell C-F, Kozlovsky A, Turunen T, Ulich T, Välitalo S, Scotto C, Pezzopane M (2016) Comparison between manual scaling and Autoscala automatic scaling applied to Sodankylä Geophysical Observatory ionograms. Geosci Instrum Method Data Syst 5:53–64. doi:10.5194/gi-5-53-2016CrossRefGoogle Scholar
  • 11. Fagundes PR, Klausner V, Sahai Y, Pillat VG, Becker-Guedes F, Bertoni FCP, Bolzan MJA, Abalde JR (2007) Observations of daytime F2-layer stratification under the southern crest of the equatorial ionization anomaly region. J Geophys Res 112(A4):A04302. doi:10.1029/2006JA011888CrossRefGoogle Scholar
  • 12. Fox MW, Blundell C (1989) Automatic scaling of digital ionograms. Radio Sci 24(6):747–761. doi:10.1029/RS024i006p00747CrossRefGoogle Scholar
  • 13. Galkin IA, Reinisch BW (2008) The new ARTIST 5 for all digisondes, Ionosonde Netw Adv Group Bull 69. http://www.ips.gov.au/IPSHosted/INAG/web-69/2008/artist5-inag.pdf
  • 14. Galkin IA, Reinisch BW, Huang X, Bilitza D (2012) Assimilation of GIRO data into a real-time IRI. Radio Sci 47(4):RS0L07. doi:10.1029/2011RS004952CrossRefGoogle Scholar
  • 15. Gardner LC, Schunk RW, Scherliess L, Sojka JJ, Zhu L (2014) Global assimilation of ionospheric measurements-Gauss Markov model: improved specifications with multiple data types. Space Weather 12(12):675–688. doi:10.1002/2014SW001104CrossRefGoogle Scholar
  • 16. Gilbert JD, Smith RW (1988) A comparison between the automatic ionogram scaling system ARTIST and the standard manual method. Radio Sci 23(6):968–974. doi:10.1029/RS023i006p00968CrossRefGoogle Scholar
  • 17. Igi S, Nozaki K, Nagayama M, Ohtani A, Kato H, Igarashi K (1993) Automatic ionogram processing systems in Japan. In: Proceedings of Session G6, 24th General Assembly of the International Union of Radio Science (URSI), 25 August–2 September 1993, KyotoGoogle Scholar
  • 18. Jacobs L, Poole AWV, McKinnel LA (2004) An analysis of automatically scaled F1 layer data over Grahamstown, South Africa. Adv Space Res 34(9):1949–1952. doi:10.1016/j.asr.2004.06.009CrossRefGoogle Scholar
  • 19. Jiang C, Yang G, Zhao Z, Zhang Y, Zhu P, Sun H (2013) An automatic scaling technique for obtaining F2 parameters and F1 critical frequency from vertical incidence ionograms. Radio Sci 48(6):739–751. doi:10.1002/2013RS005223CrossRefGoogle Scholar
  • 20. Jiang C, Yang G, Zhao Z, Zhang Y, Zhu P, Sun H, Zhou C (2014) A method for the automatic calculation of electron density profiles from vertical incidence ionograms. J Atmos Sol Terr Phys 107:20–29. doi:10.1016/j.jastp.2013.10.012CrossRefGoogle Scholar
  • 21. Jiang C, Zhang Y, Yang G, Zhu P, Sun H, Cui X, Song H, Zhao Z (2015a) Automatic scaling of the sporadic E layer and removal of its multiple reflection and backscatter echoes for vertical incidence ionograms. J Atmos Sol Terr Phys 129:41–48. doi:10.1016/j.jastp.2015.04.005CrossRefGoogle Scholar
  • 22. Jiang C, Yang G, Lan T, Zhu P, Song H, Zhou C, Cui X, Zhao Z, Zhang Y (2015b) Improvement of automatic scaling of vertical incidence ionograms by simulated annealing. J Atmos Sol Terr Phys 133:178–184. doi:10.1016/j.jastp.2015.09.002CrossRefGoogle Scholar
  • 23. Krasheninnikov I, Pezzopane M, Scotto C (2010) Application of Autoscala to ionograms recorded by the AIS-Parus ionosonde. Comp Geosci 36(5):628–635. doi:10.1016/j.cageo.2009.09.013CrossRefGoogle Scholar
  • 24. Lee IT, Matsuo T, Richmond AD, Liu JY, Wang W, Lin CH, Anderson JL, Chen MQ (2012) Assimilation of FORMOSAT-3/COSMIC electron density profiles into a coupled thermosphere/ionosphere model using ensemble Kalman filtering. J Geophys Res 117(A10):A10318. doi:10.1029/2012JA017700CrossRefGoogle Scholar
  • 25. Lynn KJW, Harris TJ, Sjarifudin M (2000) Strattification of the F2 layer observed in Southeast Asia. J Geophys Res 105(A12):27147–27156. doi:10.1029/2000JA900056CrossRefGoogle Scholar
  • 26. MacDougall JW, Grant IF, Shen X (1993) The Canadian advanced digital ionosonde: design and results. In: Proceedings of 24th General Assembly of the International Union of Radio Science (URSI), 25 August–2 September 1993, KyotoGoogle Scholar
  • 27. McNamara LF (2006) Quality figures and error bars for autoscaled Digisonde vertical incidence ionograms. Radio Sci 41(4):RS4011. doi:10.1029/2005RS003440CrossRefGoogle Scholar
  • 28. McNamara LF, Angling MJ, Elvidge S, Fridman SV, Hausman MA, Nickisch LJ, McKinnell LA (2013) Assimilation procedures for updating ionospheric profiles below the F2 peak. Radio Sci 48(2):143–157. doi:10.1002/rds.20020CrossRefGoogle Scholar
  • 29. Nava B, Rodríguez-Zuluaga J, Alazo-Cuartas K, Kashcheyev A, Migoya-Orué Y, Radicella SM, Amory-Mazaudier C, Fleury R (2016) Middle-and low-latitude ionosphere response to 2015 St. Patrick’s Day geomagnetic storm. J Geophys Res 121(4):3421–3438. doi:10.1002/2015JA022299CrossRefGoogle Scholar
  • 30. Nayak C, Tsai L-C, Su S-Y, Galkin IA, Tan ATK, Nofri E, Jamjareegulgarn P (2016) Peculiar features of the low-latitude and midlatitude ionospheric response to the St. Patrick’s Day geomagnetic storm of 17 March 2015. J Geophys Res 121(8):7941–7960. doi:10.1002/2016JA022489CrossRefGoogle Scholar
  • 31. Pezzopane M (2004) Interpre: a Windows software for semiautomatic scaling of ionospheric parameters from ionograms. Comp Geosci 30(1):125–130. doi:10.1016/j.cageo.2003.09.009CrossRefGoogle Scholar
  • 32. Pezzopane M, Scotto C (2004) Software for the automatic scaling of critical frequency foF2 and MUF(3000)F2 from ionograms applied at the Ionospheric Observatory of Gibilmanna. Ann Geophys 47(6):1783–1790Google Scholar
  • 33. Pezzopane M, Scotto C (2005) The INGV software for the automatic scaling of foF2 and MUF(3000)F2 from ionograms: a performance comparison with ARTIST 4.01 from Rome data. J Atmos Sol Terr Phys 67(12):1063–1073. doi:10.1016/j.jastp.2005.02.022CrossRefGoogle Scholar
  • 34. Pezzopane M, Scotto C (2007) Automatic scaling of critical frequency foF2 and MUF(3000)F2: a comparison between Autoscala and ARTIST 4.5 on Rome data. Radio Sci 42(4):RS4003. doi:10.1029/2006RS003581CrossRefGoogle Scholar
  • 35. Pezzopane M, Scotto C (2010) Highlighting the F2 trace on an ionogram to improve Autoscala performance. Comp Geosci 36(9):1168–1177. doi:10.1016/j.cageo.2010.01.010CrossRefGoogle Scholar
  • 36. Pezzopane M, Scotto C, Tomasik Ł, Krasheninnikov I (2010) Autoscala: an aid for different ionosondes. Acta Geophys 58(3):513–526. doi:10.2478/s11600-009-0038-1CrossRefGoogle Scholar
  • 37. Pezzopane M, Pietrella M, Pignatelli A, Zolesi B, Cander LR (2011) Assimilation of autoscaled data and regional and local ionospheric models as input sources for real-time 3-D International Reference Ionosphere modeling. Radio Sci 46(5):RS5009. doi:10.1029/2011RS004697CrossRefGoogle Scholar
  • 38. Pezzopane M, Pietrella M, Pignatelli A, Zolesi B, Cander LR (2013) Testing the three-dimensional IRI-SIRMUP-P mapping of the ionosphere for disturbed periods. Adv Space Res 52(10):1726–1736. doi:10.1016/j.asr.2012.11.028CrossRefGoogle Scholar
  • 39. Piggott WR, Rawer K (1972) U.R.S.I. Handbook of Ionogram Interpretation and Reduction. World Data Center A for Solar-Terrestrial Physics, NOAA, BoulderGoogle Scholar
  • 40. Pignalberi A, Pezzopane M, Tozzi R, De Michelis P, Coco I (2016) Comparison between IRI and preliminary Swarm Langmuir probe measurements during the St. Patrick storm period. Earth Planets Space 68(93):1–18. doi:10.1186/s40623-016-0466-5Google Scholar
  • 41. Pillat VG, Guimaraes LNF, Fagundes PR, da Silva JDS (2013) A computational tool for ionosonde CADI’s ionogram analysis. Comp Geosci 52:372–378. doi:10.1016/j.cageo.2012.11.009CrossRefGoogle Scholar
  • 42. Pillat VG, Fagundes PR, Guimaraes LNF (2015) Automatically identification of Equatorial Spread-F occurrence on ionograms. J Atmos Sol Terr Phys 135:118–125. doi:10.1016/j.jastp.2015.10.015CrossRefGoogle Scholar
  • 43. Reinisch BW, Huang X (1983) Automatic calculation of electron density profiles from digital ionograms: 3. Processing of bottomside ionograms. Radio Sci 18(3):477–492. doi:10.1029/RS018i003p00477CrossRefGoogle Scholar
  • 44. Reinisch BW, Huang X, Galkin IA, Paznukhov V, Kozlov A (2005) Recent advances in real-time analysis of ionograms and ionospheric drift measurements with digisondes. J Atmos Sol Terr Phys 67(12):1054–1062. doi:10.1016/j.jastp.2005.01.009CrossRefGoogle Scholar
  • 45. Sabbagh D, Scotto C, Sgrigna V (2016) A regional adaptive and assimilative three-dimensional ionospheric model. Adv Space Res 57(5):1241–1257. doi:10.1016/j.asr.2015.12.038CrossRefGoogle Scholar
  • 46. Scotto C (2009) Electron density profile calculation technique for Autoscala ionogram analysis. Adv Space Res 44(6):756–766. doi:10.1016/j.asr.2009.04.037CrossRefGoogle Scholar
  • 47. Scotto C, MacDougall J (2012) Application of Autoscala software to the Canadian advanced digital ionosonde. Int J Remote Sens 33(17):5574–5582. doi:10.1080/01431161.2012.661097CrossRefGoogle Scholar
  • 48. Scotto C, Pezzopane M (2008) Removing multiple reflections from the F2 layer to improve Autoscala performance. J Atmos Sol Terr Phys 70(15):1929–1934. doi:10.1016/j.jastp.2008.05.012CrossRefGoogle Scholar
  • 49. Spogli L, Cesaroni C, Di Mauro D, Pezzopane M, Alfonsi L, Musicò E, Povero G, Pini M, Dovis F, Romero R, Linty N, Abadi P, Nuraeni F, Husin A, Le Huy M, Thi Lan T, Vihn La T, Pillat VG, Floury N (2016) Formation of ionospheric irregularities over Southeast Asia during the 2015 St. Patrick’s Day storm. J Geophys Res 121(12):12211–12233. doi:10.1002/2016JA023222CrossRefGoogle Scholar
  • 50. Stankov SM, Jodogne JC, Kutiev I, Stegen K, Warnant R (2012) Evaluation of automatic ionogram scaling for use in real-time ionospheric density profile specification: dourbes DGS-256/ARTIST-4 performance. Ann Geophys 55(2):283–291. doi:10.4401/ag-4976Google Scholar
  • 51. Su F, Zhao Z, Li S, Yao M, Chen G, Zhou Y (2012) Signal identification and trace extraction for the vertical ionogram. IEEE Geosci Remote Sens Lett 9(6):1031–1035. doi:10.1109/LGRS.2012.2189350CrossRefGoogle Scholar
  • 52. Tsai LC, Berkey FT (2000) Ionogram analysis using fuzzy segmentation and connectedness techniques. Radio Sci 35(5):1173–1186. doi:10.1029/1999RS002170CrossRefGoogle Scholar
  • 53. Tulasi Ram S, Yokoyama T, Otsuka Y, Shiokawa K, Sripathi S, Veenadhari B, Heelis R, Ajith KK, Gowtam VS, Gurubaran S, Supnithi P, Le Huy M (2016) Duskside enhancement of equatorial zonal electric field response to convection electric fields during the St. Patrick’s Day storm on 17 March 2015. J Geophys Res 121(1):538–548. doi:10.1002/2015JA021932CrossRefGoogle Scholar
  • 54. Zabotin NA, Wright JW, Zhbankov GA (2006) NeXtYZ: three-dimensional electron density inversion for dynasonde ionograms. Radio Sci 41(6):RS6S32. doi:10.1029/2005RS003352CrossRefGoogle Scholar
  • 55. Zheng H, Ji G, Wang G, Zhao Z, He S (2013) Automatic scaling of F layer from ionograms based on image processing and analysis. J Atmos Sol Terr Phys 105–106:110–118. doi:10.1016/j.jastp.2013.09.007CrossRefGoogle Scholar
  • 56. Zhong J, Wang W, Yue X, Burns AG, Dou X, Lei J (2016) Long-duration depletion in the topside ionospheric total electron content during the recovery phase of the March 2015 strong storm. J Geophys Res 121(5):4733–4747. doi:10.1002/2016JA022469
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4376fbb2-ecb8-475b-a9a7-c4a51e5338d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.