PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimum design of fiber angle and hole orientation of an orthotropic plate

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the goal of decreasing the stress concentration along the hole boundary in an orthotropic plate under inequi-biaxial loadings, an optimum design of the fiber angle and hole orientation is presented. The maximum absolute tangential stress along the hole boundary is taken as the objective function, and the fiber orientation angle and the hole orientation angle are considered as design variables. The conformal transformation method of a complex function and the Differential Evolution (DE) algorithm are used. Two non-circular shapes, ellipse and hexagon are taken as examples to analyze the problem. Based on the results, we can conclude that the major axis of elliptical holes should be designed in the direction of the maximum external loading for a perforated structure in an orthotropic plate. However, the principal direction that has the larger Young’s modulus should be inclined to the direction of the minimum loading, especially for a significantly orthotropic plate.
Rocznik
Strony
297--311
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • North China Electric Power University, Institute of Hydroelectric and Geotechnical Engineering, Beijing, China
autor
  • North China Electric Power University, Institute of Hydroelectric and Geotechnical Engineering, Beijing, China
autor
  • North China Electric Power University, Institute of Hydroelectric and Geotechnical Engineering, Beijing, China
autor
  • North China Electric Power University, Institute of Hydroelectric and Geotechnical Engineering, Beijing, China
Bibliografia
  • 1. Bjorkman G.S., Richards R., 1976, Harmonic holes – an inverse problem in elasticity, Journal of Applied Mechanics, 43, 3, 414-418
  • 2. Bjorkman G.S., Richards R., 1979, Harmonic holes for nonconstant fields, Journal of Applied Mechanics, 46, 3, 573-576
  • 3. Chen Z.Y., 1994, Analytical Method of Rock Mechanics Analysis, China Coal Industry Publishing House, Beijing
  • 4. Daoust J., Hoa S.V., 1991, An analytical solution for anisotropic plates containing triangular holes, Composite Structures, 19, 2, 107-130
  • 5. Dhir S.K., 1981, Optimization in a class of hole shapes in plate structures, Journal of Applied Mechanics, 48, 4, 905-908
  • 6. Engels H., Zakharov D., Becker W., 2001, The plane problem of an elliptically reinforced circular hole in an anisotropic plate or laminate, Archive of Applied Mechanics, 71, 9, 601-612
  • 7. Jain N.K., 2009, Analysis of stress concentration and deflection in isotropic and orthotropic rectangular plates with central circular hole under transverse static loading, World Academy of Science Engineering and Technology, 3, 12, 1513-1519
  • 8. Lekhnitskii S.G., 1968, Anisotropic Plates, Gorden and Breach, New York
  • 9. Lekhnitskii S.G., 1981, Theory of Elasticity of an Anisotropic Body, Mir Publishers, Moscow
  • 10. Li C., Zheng Y.P., 2007, Influence of different orifice figure on hole-edge stress of composite material plate with hole (in Chinese), Engineering Mechanics, 24, 10, 19-24
  • 11. Lu A.Z., Chen H.Y., Qin Y., Zhang N., 2014a, Shape optimisation of the support section of a tunnel at great depths, Computers and Geotechnics, 61, 3, 190-197
  • 12. Lu A.Z., Chen H.Y., Qin Y., Zhang N., 2014b, Shape optimization of tunnel support section under contact condition of pure slip, Chinese Journal of Rock Mechanics and Engineering, 33, 8, 1563-1571
  • 13. Lu A.Z., Zhang N., Zhang X.L., Lu D.H., Li W.S., 2015, Analytic method of stress analysis for an orthotropic rock mass with an arbitrary-shaped tunnel, International Journal of Geomechanics, 15, 4, 04014068
  • 14. Muskhelishvili N.I., 1963, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen
  • 15. Rao D.K.N., Babu M.R., Reddy K.R.N., Sunil D., 2010, Stress around square and rectangular cutouts in symmetric laminates, Composite Structures, 92, 12, 2845-2859
  • 16. Ren G., Smith J.V., Tang J.W., Xie Y.M., 2005, Underground excavation shape optimization using an evolutionary procedure, Computers and Geotechnics, 32, 2, 122-132
  • 17. Rezaeepazhand J., Jafari M., 2008, Stress analysis of composite plates with non-circular cutout, Key Engineering Materials, 385-387, 365-368
  • 18. Romeo G., 2001, Analytical and experimental behavior of laminated panels with rectangular opening under biaxial tension, compression and shear loads, Journal of Composite Materials, 35, 8, 639-664
  • 19. Savin G.N., 1961, Stress Concentration Around Holes, Pergamon Press, New York
  • 20. Sharma D.S., 2011, Stress concentration around circular/elliptical/triangular cutouts in infinite composite plate, Proceedings of the World Congress on Engineering, 3, 2626-2631
  • 21. Sharma D.S., Patel N.P., Trivedi R.R., 2014, Optimum design of laminates containing an elliptical hole, International Journal of Mechanical Sciences, 85, 8, 76-87
  • 22. Sobótka M., Łydżba D., Różański A., 2013, Shape optimization of underground excavation by simulated annealing, Studia Geotechnica et Mechanica, 35, 1, 209-218
  • 23. Storn R., Price K., 1997, Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization, 11, 4, 341-359
  • 24. Toubal L., Karama M., Lorrain B., 2005, Stress concentration in a circular hole in composite plate, Composite Structures, 68, 1, 31-36
  • 25. Ukadgaonker V.G., Kakhandki V., 2005, Stress analysis for an orthotropic plate with an irregular shaped hole for different in-plane loading conditions – Part 1, Composite Structures, 70, 3, 255-274
  • 26. Ukadgaonker V.G., Rao D.K.N., 2000, A general solution for stresses around holes in symmetric laminates under in plane loading, Composite Structures, 49, 3, 339-354
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4371ea46-77af-409f-be12-516f2b116c71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.