PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of the adhesion between TPU and PLA in multi-material 3D printing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In the Fused Filament Fabrication (FFF/FDM) technology, the multi-material manufacturing additive method is achieved by a single nozzle or multiple nozzles working simultaneously with different materials. However, the adhesion between different materials at the boundary interface in FDM multi-material printing is a limiting factor. These studies are concerned with improving and study the adhesion between two polymers. Design/methodology/approach: Due to the numerous applications and possibilities of 3D printed objects, combining different materials has become a subject of interest. PLA is an alternative to the use of petrochemical-based polymers. Thermoplastic Polyurethane is a flexible material that can achieve different characteristics when combined with a rigid filament, such as PLA. To improve the adhesion between PLA and TPU in multi-material FFF/FDM, we propose the comparison of different processes: post-processing with acetone immersion, surface activation during printing with Acetone, surface activation during printing with tetrahydrofuran, post-processing annealing, and connection of printed parts with tetrahydrofuran. Findings: Modifying the 3D printing process improved the quality of the adhesive bond between the two different polymers. Activation of the surface with THF is the treatment method recommended by the authors due to the low impact on the deformation/degradation of the object. Research limitations/implications: In the study, adhesion was considered in relation to the circular pattern of surface development. Further analysis should include other surface development patterns and changes in printing parameters, e.g. process temperatures and layer application speed. Practical implications: 3D printing with multi-materials, such as PLA biopolymer and thermoplastic polyurethane, allows for the creation of flexible connections. The strengthening of the biopolymer broadens the possibilities of using polylactide. Examples of applications include: automotive (elements, where flexible TPU absorbs vibrations and protects PLA from cracking), medicine (prostheses with flexible elements ensuring mobility in the joints). Originality/value: Multi-material printing is a new trend in 3D printing research, and this research is aimed at promoting the use and expanding the possibilities of using PLA biopolymer.
Rocznik
Strony
49--56
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
  • Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Łódź, Poland
  • Mechanical Engineering Department, Universidad San Francisco de Quito, Diego de Robles y Av. Interoceánica, Quito, Ecuador
  • Institute of Materials Science and Engineering, International Faculty of Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Łódź, Poland
autor
  • Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Łódź, Poland
Bibliografia
  • [1] T.J. Horn, O.L.A. Harrysson, Overview of Current Additive Manufacturing Technologies and Selected Applications, Science Progress 95/3 (2012) 255-282. DOI: https://doi.org/10.3184/003685012X13420984463047
  • [2] P. Dudek, FDM 3D Printing Technology in Manufacturing Composite Elements, Archives of Metallurgy and Materials 58/4 (2013) 1415-1418. DOI: https://doi.org/10.2478/amm-2013-0186
  • [3] V.G. Surange, P.V. Gharat, 3D Printing Process Using Fused Deposition Modelling (FDM), International Research Journal of Engineering and Technology 3/3 (2016) 1403-1406.
  • [4] R. Patel, C. Desai, S. Kushwah, M.H. Mangrola, A Review Article on FDM Process Parameters in 3D Printing for Composite Materials, Materials Today: Proceedings 60/3 (2022) 2162-2166. DOI: https://doi.org/10.1016/j.matpr.2022.02.385
  • [5] E.H. Tümer, H.Y. Erbil, Extrusion-Based 3D Printing Applications of PLA Composites: A Review, Coatings 11/4 (2021) 390. DOI: https://doi.org/10.3390/coatings11040390
  • [6] N. Guo, M.C. Leu, Additive Manufacturing: Technology, Applications, and Research Needs, Frontiers of Mechanical Engineering 8/3 (2013) 215-243. DOI: https://doi.org/10.1007/s11465-013-0248-8
  • [7] M. Vaezi, H. Seitz, S. Yang, A Review on 3D Micro-Additive Manufacturing Technologies, The International Journal of Advanced Manufacturing Technology 67/5-8 (2013) 1721-1754. DOI: https://doi.org/10.1007/s00170-012-4605-2
  • [8] B.N. Turner, R. Strong, S.A. Gold, A Review of Melt Extrusion Additive Manufacturing Processes: I. Process Design and Modeling, Rapid Prototyp Journal 20/3 (2014) 192-204. DOI: https://doi.org/10.1108/RPJ-01-2013-0012
  • [9] N. Ibrahim, T. Jovic, Z.M. Jessop, I.S. Whitaker, Innovation in a Time of Crisis: A Systematic Review of Three-Dimensional Printing in the COVID-19 Pandemic, 3D Printing and Additive Manufacturing 8/3 (2021) 201-215. DOI: https://doi.org/10.1089/3dp.2020.0258
  • [10] Y. Zhang, L. Poli, E. Garratt, S. Foster, A. Roch, Utilizing Fused Filament Fabrication for Printing Iron Cores for Electrical Devices, 3D Printing and Additive Manufacturing 7/6 (2020) 279-287. DOI: https://doi.org/10.1089/3dp.2020.0136
  • [11] W. Gu, E. Styger, D.H. Warner, Assessment of Additive Manufacturing for Increasing Sustainability and Productivity of Smallholder Agriculture, 3D Printing and Additive Manufacturing 7/6 (2020) 300-310. DOI: https://doi.org/10.1089/3dp.2020.0022
  • [12] D. Han, H. Lee, Recent Advances in Multi-Material Additive Manufacturing: Methods and Applications, Current Opinion in Chemical Engineering 28 (2020) 158-166. DOI: https://doi.org/10.1016/j.coche.2020.03.004
  • [13] E. Brancewicz-Steinmetz, J. Sawicki, Bonding and Strengthening the PLA Biopolymer in Multi-Material Additive Manufacturing, Materials 15/16 (2022) 5563. DOI: https://doi.org/10.3390/ma15165563
  • [14] D. Baca, R. Ahmad, The Impact on the Mechanical Properties of Multi-Material Polymers Fabricated with a Single Mixing Nozzle and Multi-Nozzle Systems via Fused Deposition Modeling, International Journal of Advanced Manufacturing Technology 106/9-10 (2020) 4509-4520. DOI: https://doi.org/10.1007/s00170-020-04937-3
  • [15] B. Arifvianto, B.E. Satiti, U.A. Salim, Suyitno, A. Nuryanti, M. Mahardika, Mechanical Properties of the FFF Sandwich-Structured Parts Made of PLA/TPU Multi-Material, Progress in Additive Manufacturing 7 (2022) 1213-1223. DOI: https://doi.org/10.1007/s40964-022-00295-6
  • [16] S.D. Nath, S. Nilufar, An Overview of Additive Manufacturing of Polymers and Associated Composites, Polymers 12/11 (2020) 2719. DOI: https://doi.org/10.3390/polym12112719
  • [17] A. Unkovskiy, E. Wahl, F. Huettig, C. Keutel, S. Spintzyk, Multimaterial 3D Printing of a Definitive Silicone Auricular Prosthesis: An Improved Technique, The Journal of Prosthetic Dentistry 125/6 (2021) 946-950. DOI: https://doi.org/10.1016/j.prosdent.2020.02.021
  • [18] A. Georgopoulou, B. Vanderborght, F. Clemens, Multi-Material 3D Printing of Thermoplastic Elastomers for Development of Soft Robotic Structures with Integrated Sensor Elements, in: M. Meboldt, C. Klahn (eds), Industrializing Additive Manufacturing, AMPA 2020, Springer, Cham, 2021, 67-81. DOI: https://doi.org/10.1007/978-3-030-54334-1_6
  • [19] W. Yang, E. Calius, L. Huang, S. Singamneni, Artificial Evolution and Design for Multi-Material Additive Manufacturing. 3D Printing and Additive Manufacturing 7/6 (2020) 326-337. DOI: https://doi.org/10.1089/3dp.2020.0114
  • [20] Y.E. Belarbi, S. Guessasma, S. Belhabib, F. Benmahiddine, A.E.A. Hamami, Effect of Printing Parameters on Mechanical Behaviour of Pla-Flax Printed Structures by Fused Deposition Modelling, Materials 14/19 (2021) 5883. DOI: https://doi.org/10.3390/ma14195883
  • [21] S. Hassanajili, A. Karami-Pour, A. Oryan, T. Talaei-Khozani, Preparation and Characterization of PLA/PCL/HA Composite Scaffolds Using Indirect 3D Printing for Bone Tissue Engineering, Materials Science and Engineering C 104 (2019) 109960. DOI: https://doi.org/10.1016/j.msec.2019.109960
  • [22] Z.-W. Liu, H.-C. Chou, S.-H. Chen, C.-T. Tsao, C.-N. Chuang, L.-C. Cheng, C.-H. Yang, C.-K. Wang, K.-H. Hsieh, Mechanical and Thermal Properties of Thermoplastic Polyurethane-Toughened Polylactide-Based Nanocomposites, Polymer Composites 35/9 (2014) 1744-1757. DOI: https://doi.org/10.1002/pc.22828
  • [23] F. Feng, L. Ye, Morphologies and Mechanical Properties of Polylactide/Thermoplastic Polyurethane Elastomer Blends, Journal of Applied Polymer Science 119/5 (2011) 2778-2783. DOI: https://doi.org/10.1002/app.32863
  • [24] A. Alexandre, F.A. Cruz Sanchez, H. Boudaoud, M. Camargo, J.M. Pearce, Mechanical Properties of Direct Waste Printing of Polylactic Acid with Universal Pellets Extruder: Comparison to Fused Filament Fabrication on Open-Source Desktop Three-Dimensional Printers, 3D Printing and Additive Manufacturing 7/5 (2020) 237-247. DOI: https://doi.org/10.1089/3dp.2019.0195
  • [25] G. Bielęda, G. Zwierzchowski, K. Rosłan, A. Adamus, J. Malicki, Dosimetric Assessment of the Impact of Low-Cost Materials Used in Stereolithography in High-Dose-Rate Brachytherapy, Journal of Contemporary Brachytherapy 13/2 (2021) 188-194. DOI: https://doi.org/10.5114/jcb.2021.105287
  • [26] M. Asadollahi, E. Gerashi, M. Zohrevand, M. Zarei, S.S. Sayedain, R. Alizadeh, S. Labbaf, M. Atari, Improving mechanical properties and biocompatibility of 3D printed PLA by the addition of PEG and titanium particles, using a novel incorporation method, Bioprinting 27 (2022) e00228. DOI: https://doi.org/10.1016/j.bprint.2022.e00228
  • [27] N. Vidakis, M. Petousis, E. Velidakis, M. Liebscher, V. Mechtcherine, L. Tzounis, On the Strain Rate Sensitivity of Fused Filament Fabrication (FFF) Processed PLA, ABS, PETG, PA6, and PP Thermoplastic Polymers, Polymers 12/12 (2020) 2924. DOI: https://doi.org/10.3390/polym12122924
  • [28] M. Singh, S. Kumar, R. Singh, R. Kumar, V. Kumar, On Shear Resistance of Almond Skin Reinforced PLA Composite Matrix-Based Scaffold Using Cancellous Screw, Advances in Materials and Processing Technologies 8/2 (2022) 2361-2384. DOI: https://doi.org/10.1080/2374068X.2021.1912528
  • [29] M. Harris, J. Potgieter, H. Mohsin, J.Q. Chen, S. Ray, K.M. Arif, Partial Polymer Blend for Fused Filament Fabrication with High Thermal Stability, Polymers 13/19 (2021) 3353. DOI: https://doi.org/10.3390/polym13193353
  • [30] A. Bandyopadhyay, B. Heer, Additive Manufacturing of Multi-Material Structures, Materials Science and Engineering R: Reports 129 (2018)1-16. DOI: https://doi.org/10.1016/j.mser.2018.04.001
  • [31] Y. Li, H. Shimizu, Toughening of Polylactide by Melt Blending with a Biodegradable Poly(Ether)Urethane Elastomer, Macromolecular Bioscience 7/7 (2007) 921-928. DOI: https://doi.org/10.1002/mabi.200700027
  • [32] A. Sambruno, F. Bañon, J. Salguero, B. Simonet, M. Batista, Kerf Taper Defect Minimization Based on Abrasive Waterjet Machining of Low Thickness Thermoplastic Carbon Fiber Composites C/TPU, Materials 12/24 (2019) 4192. DOI: https://doi.org/10.3390/ma12244192
  • [33] E. Brancewicz-Steinmetz, J. Sawicki, P. Byczkowska, The Influence of 3D Printing Parameters on Adhesion between Polylactic Acid (PLA) and Thermoplastic Polyurethane (TPU), Materials 14/21 (2021) 6464. DOI: https://doi.org/10.3390/ma14216464
  • [34] H. Hong, J. Wei, Y. Yuan, F.-P. Chen, J. Wang, X. Qu, C.-S. Liu, A Novel Composite Coupled Hardness with Flexibleness - polylactic Acid Toughen with Thermoplastic Polyurethane, Journal of Applied Polymer Science 121/2 (2011) 855-861. DOI: https://doi.org/10.1002/app.33675
  • [35] Y. Tao, J. Shao, P. Li, S.Q. Shi, Application of a Thermoplastic Polyurethane/Polylactic Acid Composite Filament for 3D-Printed Personalized Orthosis, Materiali in Tehnologije/Materials and Technology 53/1 (2019) 71-76. DOI: https://doi.org/10.17222/MIT.2018.180
  • [36] P. Szarlej, I. Carayon, P. Gnatowski, M. Glinka, M. Mroczyńska, A. Brillowska-Dąbrowska, J. Kucińska-Lipka, Composite Polyurethane-Polylactide (PUR/PLA) Flexible Filaments for 3D Fused Filament Fabrication (FFF) of Antibacterial Wound Dressings for Skin Regeneration, Materials 14/20 (2021) 6054. DOI: https://doi.org/10.3390/ma14206054
  • [37] K. Luchini, S.N.B. Sloan, R. Mauro, A. Sargsyan, A. Newman, P. Persaud, D. Hawkins, D. Wolff, J. Staudinger, B.A. Creamer, Sterilization and Sanitizing of 3D-Printed Personal Protective Equipment Using Polypropylene and a Single Wall Design, 3D Printing in Medicine 7/1 (2021) 16. DOI: https://doi.org/10.1186/s41205-021-00106-8
  • [38] X.-Z. Mo, F.-X. Wei, D.-F. Tan, J.-Y. Pang, C.-B. Lan, The Compatibilization of PLA-g-TPU Graft Copolymer on Polylactide/Thermoplastic Polyurethane Blends, Journal of Polymer Research 27/2 (2020) 33. DOI: https://doi.org/10.1007/s10965-019-1999-7
  • [39] L.R. Lopes, A.F. Silva, O.S. Carneiro, Multi-Material 3D Printing: The Relevance of Materials Affinity on the Boundary Interface Performance, Additive Manufacturing 23 (2018) 45-52. DOI: https://doi.org/10.1016/j.addma.2018.06.027
  • [40] E. Brancewicz-Steinmetz, Influence of Surface Development Obtained by 3D Printing Technology on Adhesion Between Polylactide (PLA) and Thermoplastic Polyurethane (TPU), Technical University of Lodz, Lodz, 2022.
  • [41] Mitsubishi Chemical Group, THF/Tetrahydrofuran. Available from: https://www.m-chemical.co.jp/en/products/departments/mcc/c4/product/1201006_7922.html
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-436fc109-1568-4a1f-9333-5bc3f3ece648
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.