PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthetic jet actuator with two opposite diaphragms

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The synthetic jet actuators are one of the most investigated types of actuators used in heat transfer and active flow control. The energetic efficiency of actuators is a key parameter determining the possibility of device use. The actuators with two or more diaphragms have higher efficiency than the actuators with only one. The paper presents the investigations of the acoustic synthetic jet actuator with two opposite diaphragms. In the paper, synthetic jet velocity, Reynolds number and the energetic efficiency as a function of oscillating actuator frequency, for a different cavity, orifice configuration and one real input power P0 = 2 W were studied. The possibility of theoretical calculation of first and second resonance frequency were checked. The coupling ratio for actuators was calculated. The maximum energetic efficiency was η = 8.67% and Reynolds number Re = 8503. The possibility of using the same dependencies and rules during the design of actuators with two opposite diaphragms as in the case of actuators with one diaphragm was demonstrated. The resultsmay be useful in the design of the actuators of the two membranes.
Rocznik
Strony
17--25
Opis fizyczny
Bibliogr. 34 poz., 1 fot., rys., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, UTP University of Science and Technology, Al. Prof. S. Kaliskiego 7, Bydgoszcz, 85-796, Poland
  • Department of Mechanical Engineering, UTP University of Science and Technology, Al. Prof. S. Kaliskiego 7, Bydgoszcz, 85-796, Poland
  • Department of Mechanical Engineering, UTP University of Science and Technology, Al. Prof. S. Kaliskiego 7, Bydgoszcz, 85-796, Poland
Bibliografia
  • [1] Amitay, M., Honohan, A., Trautman, M. and Glezer, A.: Modification of the aerodynamic characteristics of bluff bodies using fluidic actuators, in AIAA Paper 97-2004, 1997.
  • [2] Ciuryla, M., Liu, Y., Farnsworth, J., Kwan, C. and Amitay, M.: Flight Control Using Synthetic Jets on a Cessna 182 Model, J. Aircr. 44, 642-653, 2007.
  • [3] Krieg, M. and Mohseni, K.: Dynamic modeling and control of biologically inspired vortex ring thrusters for underwater robot locomotion, IEEE Trans. Robot. 26, 542-554, 2010.
  • [4] Krieg, M. and Mohseni, K.: Modelling circulation, impulse and kinetic energy of starting jets with non-zero radial velocity, J. Fluid Mech. 719, 488-526, 2013.
  • [5] Chaudhari, M., Puranik, B. and Agrawal, A.: Heat transfer characteristics of synthetic jet impingement cooling, Int. J. Heat Mass Transfer 53, 1057-1069, 2010.
  • [6] Qayoum, A. and Malik, A.: Influence of the Excitation Frequency and Orifice Geometry on the Fluid Flow and Heat Transfer Characteristics of Synthetic Jet Actuators, Fluid Dyn. 54, 575-589, 2019.
  • [7] Trávnícek, Z., Tesar, V., Broucková, Z. and Peszynski, K.: Annular impinging jet controlled by radial synthetic jet, Heat Transfer Eng. 35, 1450-1461, 2014.
  • [8] Tesař, V., Broučková, Z., Kordík, J., Trávníček, Z. and Peszynski, K.: Valves with flow control by synthetic jets, EPJ Web Conf. 25, 01092, 2012.
  • [9] Gil, P.: Bluff body drag control using synthetic jet, J. Appl. Fluid Mech. 12, 293-302, 2019.
  • [10] Kordík, J. and Trávníček, Z.: Comparison of synthetic jet actuators based on sharp-edged and round-edged nozzles, EPJ Web Conf. 143, 02053, 2017.
  • [11] Kordík, J. and Trávníček, Z.: Maximization of integral outlet quantities of an axisymmetric synthetic jet actuator based on a loudspeaker, EJP Web of Conferences 114, 02152, 2016.
  • [12] Kordík, J. and Trávníček, Z.: Optimal diameter of nozzles of synthetic jet actuators based on electrodynamic transducers, Exp. Therm. Fluid Sci. 86, 281-294, 2017.
  • [13] Gil, P. and Strzelczyk, P.: Performance and eflciency of loudspeaker driven synthetic jet actuator, Exp. Therm. Fluid Sci. 76, 163-174, 2016.
  • [14] Greco, C.S., Ianiro, A., Astarita, T. and Cardone, G.: On the near field of single and twin circular synthetic air jets, Int. J. Heat Fluid Flow 44, 41-52, 2013.
  • [15] Greco, C.S., Castrillo, G., Crispo, C.M., Astarita, T. and Cardone, G.: Investigation of impinging single and twin circular synthetic jets flow field, Exp. Therm. Fluid Sci. 74, 354-367, 2016.
  • [16] Kordík, J., Trávníček, Z. and Pavelka, M.: Energetic eflciencies of synthetic and hybrid synthetic jet actuators driven by electrodynamic transducers, Exp. Therm. Fluid Sci. 69, 119-126, 2015.
  • [17] Trisno, R., Harinaldi and Kosasih, E.A.: Vortex ring formation characteristics in synthetic jet due to changes of excitation frequency in the ½-ball cavity actuator, J. Phys.: Conf. Ser. 822, 012010, 2017.
  • [18] Fanning, E., Persoons, T. andMurray, D.B.: Heat transfer and flow characteristics of a pair of adjacent impinging synthetic jets, Int. J. Heat Fluid Flow 54, 153-166, 2015.
  • [19] Paolillo, G., Greco, C.S. and Cardone, G.: The evolution of quadruple synthetic jets, Exp. Therm. Fluid Sci. 89, 259-275, 2017.
  • [20] Ahmad, M. and Qayoum, A.: Investigation of impingement of double orifice synthetic jet for heat and fluid flow characteristics in quiescent flow, Pertanika J. Sci. Technol. 27, 1181-1206, 2019.
  • [21] Smyk, E.:, Numerical simulation of axisymmetric valve operation for different outer cone angle, EPJ Web Conf. 143, 02112, 2017.
  • [22] Pick, P. and Andrle, M.: The influence of modulated slotted synthetic jet on the bypass of Hump, Eng. Mech. 20, 271-280, 2013.
  • [23] P Pick, P., Skála, V. and Matějka, M.: Eflciency of active flow control by a synthetic jet around a Hump, EPJ Web Conf. 45, 01075, 2013.
  • [24] Smyk, E.: Interference in axisymmetric synthetic jet actuator, EPJ Web Conf. 143, 02111, 2017.
  • [25] Smyk, E.: Comparison of acoustic synthetic jet actuator with one and two diaphragms, in: 24th International Conference Engineering Mechanics 2018, 777-780, 2018.
  • [26] Broučková, Z. and Trávníček, Z.: Visualization study of hybrid synthetic jets, J. Visualization 18, 581-593, 2015.
  • [27] Smith, B.L. and Glezer, A.: Jet vectoring using synthetic jets, J. Fluid Mech. 458, 1-34, 2002.
  • [28] Ahmad, M. and Qayoum, A.: Numerical Investigation of Dimensionless Numbers on Macro-scale Synthetic Jet Actuator in Quiescent Flow, Tec. Ital. J. Eng. Sci. 63, 59-64, 2019.
  • [29] Gil, P.: Synthetic jet Reynolds number based on reaction force measurement, J. Fluids Struct. 81, 466-478, 2018.
  • [30] Gil, P. and Smyk, E.: Synthetic jet actuator eflciency based on the reaction force measurement, Sensors Actuators, A Phys. 295, 405-413, 2019.
  • [31] Trávnícek, Z., Broucková, Z. and Kordík, J.: Formation criterion for axisymmetric synthetic jets at high stokes numbers, AIAA J. 50, 2012-2017, 2012.
  • [32] Holman, R., Utturkar, Y., Mittal, R., Smith, B.L. and Cattafesta, L.: Formation criterion for synthetic jets, AIAA J. 43, 2110-2116, 2005.
  • [33] Girfoglio, M., Greco, C.S., Chiatto, M. and de Luca, L.: Modelling of eflciency of synthetic jet actuators, Sens. Actuators, A 233, 512-521, 2015.
  • [34] de Luca, L., Girfoglio, M. and Coppola, G.: Modeling and Experimental Validation of the Frequency Response of Synthetic Jet Actuators, AIAA J. 52, 1733-1748, 2014.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-436dade4-14f9-4aa2-a121-52b227253be8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.