PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of design and the accelerated wear test of agricultural nozzles on the resulting droplet size

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ konstrukcji oraz testu przyspieszonego zużycia rozpylaczy rolniczych na wielkość powstających kropel
Języki publikacji
EN
Abstrakty
EN
The change in the size of the droplets during the pesticide application process could have a negative impact on the percentage of drift or the losses of pesticides to the environment. One of the factors that could affect the droplet size produced from a single nozzle is the internal design of the nozzle itself, in addition to the wear of the nozzle orifice as a result of the usage time. In this research, three types of nozzles with different internal designs were used (Turbo TeeJet (TT), Turbo TwinJet (TTj 6011003), and Drift Guard (DG 11003)). The nozzles were subjected to an accelerated wear test for one hundred hours, and different droplet size parameters (Dv 0.1, Dv 0.5, Dv 0.9), relative span (RS), and Sauter mean diameter (SMD) were measured during and after this test. The measurements were made using the Sympatec HELOSVARIO/KR device in fifteen positions along the spray swath. The results of the study showed that the droplet size (Dv 0.5) generally increased for the DG 11003 and TTj 6011003 nozzles after the accelerated wear test (worn nozzles), while there was a decrease in Dv 0.5 for the TT 11003 nozzles. The DG 11003 nozzles (before and after the wear test) had the highest percentage of droplets with a size smaller than 150 μm (%< 150 μm) compared to the TT 11003 and TTj 6011003 nozzles. Moreover, the %< 150 μm was higher in the middle position of the spray swath for the three types of nozzles and the new and worn nozzles.
PL
Zmiana wielkości kropel podczas procesu aplikacji pestycydów może mieć negatywny wpływ na znoszenie rozpylonej cieczy lub ociekania z roślin na ziemię. Jednym z czynników, które mogą wpływać na wielkość kropli wytwarzanych przez pojedynczą dyszę jest wewnętrzna konstrukcja samej dyszy, a także zużycie jej otworu w wyniku użytkowania. W badaniu wykorzystano trzy typy dysz o różnych konstrukcjach wewnętrznych (Turbo TeeJet (TT 11003), Turbo TwinJet (TTj 6011003) i Drift Guard (DG 11003)). Dysze zostały poddane testowi przyspieszonego zużycia przez sto godzin, a podczas i po zakończeniu testu zmierzono parametry: wielkości kropli (Dv 0,1, Dv 0,5, Dv 0,9), względną rozpiętość (RS) i średnią średnicę Sautera (SMD). Pomiary wykonano za pomocą urządzenia Sympatec HELOS-VARIO/KR w piętnastu pozycjach w strudze wachlarza rozpylonej cieczy. Wyniki badania wykazały, że po teście przyspieszonego zużycia rozmiar kropli (Dv 0,5) ogólnie wzrósł dla rozpylaczy DG 11003 i TTj 6011003, a zmalał dla rozpylaczy TT 11003. Dysze DG 11003 (przed i po teście zużycia) miały najwyższy odsetek kropel o rozmiarze mniejszym niż 150 μm (%< 150 μm) w porównaniu do dysz TT 11003 i TTj 6011003. Co więcej, %< 150 μm był wyższy w środkowej pozycji strugi rozpylonej cieczy dla wszystkich trzech typów dysz, zarówno nowych, jak i zużytych.
Rocznik
Strony
1--13
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Department of Agricultural Machines and Equipment, College of Agricultural Engineering Sciences, University of Baghdad, Baghdad 10071, Iraq
  • Department of Machinery Exploitation and Management of Production Processes, University of Life Sciences in Lublin, Głeboka 28, 20-612 Lublin, Poland
  • Department of Agricultural Machines and Equipment, College of Agricultural Engineering Sciences, University of Baghdad, Baghdad 10071, Iraq
  • Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głeboka 31, 20-612 Lublin, Poland
Bibliografia
  • Al-Taie, H. A. H. & Kadhim, N. S. (2023). The Effect of Power Sources in the Agricultural Tractor and the Developed Sprayer System on the Performance of the Electrical and Mechanical Sprayer System and some Performance Indicators of the Engine. IOP Conference Series: Earth and Environmental Science, 1262(9). https://doi.org/10.1088/1755-1315/1262/9/092005.
  • ASABE. (2009). Spray nozzle classification by droplet spectra. ANSI/ASAE S572.1 W/Corr.1, 2009.
  • Bissell, D., Lai, W., Stegmeir, M., Troolin, D., Pothos, S. & Lengsfeld, C. (2014). An approach to spray characterization by combination of measurement techniques. In ILASS Americas 26th Annual Conference on Liquid Atomization and Spray Systems. Portland.
  • Bueno, M. R., Cunha, J. P. A. R. da & de Santana, D. G. (2017). Assessment of spray drift from pesticide applications in soybean crops. Biosystems Engineering, 154. https://doi.org/10.1016/j.biosystemseng.2016.10.017.
  • Carter, O. W., Prostko, E. P. & Davis, J. W. (2017). The Influence of Nozzle Type on Peanut Weed Control Programs. Peanut Science, 44(2). https://doi.org/10.3146/ps17-4.1.
  • Creech, C. F., Henry, R. S., Fritz, B. K. & Kruger, G. R. (2015). Influence of Herbicide Active Ingredient, Nozzle Type, Orifice Size, Spray Pressure, and Carrier Volume Rate on Spray Droplet Size Characteristics. Weed Technology, 29(2). https://doi.org/10.1614/wt-d-14-00049.1.
  • Creech, C. F., Moraes, J. G., Henry, R. S., Luck, J. D. & Kruger, G. R. (2016). The Impact of Spray Droplet Size on the Efficacy of 2,4-D, Atrazine, Chlorimuron-Methyl, Dicamba, Glufosinate, and Saflufenacil. Weed Technology, 30(2). https://doi.org/10.1614/wt-d-15-00034.1.
  • Dorr, G. J., Hewitt, A. J., Adkins, S. W., Hanan, J., Zhang, H. & Noller, B. (2013). A comparison of initial spray characteristics produced by agricultural nozzles. Crop Protection, 53. https://doi.org/10.1016/j.cropro.2013.06.017.
  • Farias, M. A. G. L., Raetano, C. G., Chechetto, R. G., Ferreira-Filho, P. J., Guerreiro, J. C., Bonini, C. S. B., Prado, E. P. (2020). Spray nozzles and droplet size effects on soybean canopy deposits and stink bugs control in west region of São Paulo state - Brazil. Phytoparasitica, 48(2). https://doi.org/10.1007/s12600-020-00786-8.
  • Ferguson, J. C., Chauhan, B. S., Chechetto, R. G., Hewitt, A. J., Adkins, S. W., Kruger, G. R. & O’Donnell, C. C. (2019). Droplet-size effects on control of chloris spp. with Six POST herbicides. Weed Technology, 33(1). https://doi.org/10.1017/wet.2018.99.
  • Ferguson, J. C., Chechetto, R. G., Adkins, S. W., Hewitt, A. J., Chauhan, B. S., Kruger, G. R. & O’Donnell, C. C. (2018). Effect of spray droplet size on herbicide efficacy on four winter annual grasses. Crop Protection, 112. https://doi.org/10.1016/j.cropro.2018.05.020.
  • Ferguson, J. C., Chechetto, R. G., Hewitt, A. J., Chauhan, B. S., Adkins, S. W., Kruger, G. R. & O’Donnell, C. C. (2016). Assessing the deposition and canopy penetration of nozzles with different spray qualities in an oat (Avena sativa L.) canopy. Crop Protection, 81, 14-19. https://doi.org/10.1016/j.cropro.2015.11.013.
  • Ferreira, P. H. U., Thiesen, L. V., Pelegrini, G., Ramos, M. F. T., Pinto, M. M. D. & da Costa Ferreira, M. (2020). Physicochemical properties, droplet size and volatility of dicamba with herbicides and adjuvants on tank-mixture. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-75996-5.
  • Lafferty, C. L. & Tian, L. F. (2013). The impacts of pre-orifice and air-inlet design features on nozzle performance. https://doi.org/10.13031/2013.7343.
  • Li, S., Chen, C., Wang, Y., Kang, F. & Li, W. (2021). Study on the atomization characteristics of flat fan nozzles for pesticide application at low pressures. Agriculture (Switzerland), 11(4). https://doi.org/10.3390/agriculture11040309.
  • Liao, J., Hewitt, A. J., Wang, P., Luo, X., Zang, Y., Zhou, Z., O’donnell, C. (2019). Development of droplet characteristics prediction models for air induction nozzles based on wind tunnel tests. International Journal of Agricultural and Biological Engineering, 12(6). https://doi.org/10.25165/j.ijabe.20191206.5014.
  • Liao, J., Luo, X., Wang, P., Zhou, Z., O’Donnell, C. C., Zang, Y. & Hewitt, A. J. (2020). Analysis of the influence of different parameters on droplet characteristics and droplet size classification categories for air induction nozzle. Agronomy, 10(2). https://doi.org/10.3390/agronomy10020256.
  • McGinty, J., Baumann, P., Hoffmann, W. & Fritz, B. (2016). Evaluation of the Spray Droplet Size Spectra of Drift-reducing Agricultural Spray Nozzle Designs. American Journal of Experimental Agriculture, 11(3). https://doi.org/10.9734/ajea/2016/23785.
  • Meyer, C. J., Norsworthy, J. K., Kruger, G. R. & Barber, T. L. (2016). Effect of Nozzle Selection and Spray Volume on Droplet Size and Efficacy of Engenia Tank-Mix Combinations. Weed Technology, 30(2). https://doi.org/10.1614/wt-d-15-00141.1.
  • Milanowski, M., Subr, A., Combrzyński, M., Różańska-Boczula, M. & Parafiniuk, S. (2022a). Effect of Adjuvant, Concentration and Water Type on the Droplet Size Characteristics in Agricultural Nozzles. Applied Sciences (Switzerland), 12(12), 5821. https://doi.org/10.3390/app12125821.
  • Milanowski, M., Subr, A. & Parafiniuk, S. (2022b). Evaluation of Different Internal Designs of Hydraulic Nozzles under an Accelerated Wear Test. Applied Sciences (Switzerland), 12(2). https://doi.org/10.3390/app12020889.
  • Parafiniuk, S., Milanowski, M., Subr, A. & Krawczuk, A. (2017). Influence of surface tension of water on droplet size produced by flat jet nozzles. 295-300. https://doi.org/10.24326/fmpmsa.2017.53.
  • Spraying Systems Co. (2014). TeeJet technologies, Catalogue 51A-M. Wheaton. Wheaton, Illinois USA.
  • Subr, A., Al-Ahmadi, A. & Abbas, M. (2020). Effect of nozzle type and some locally used surfactants on the spray quality. Iraqi Journal of Agricultural Sciences, 51(3), 856-864. https://doi.org/10.36103/ijas.v51i3.1040.
  • Subr, A. K., Alheidary, M. H. R. & Al-Ahmadi, A. H. (2019). The informatics adequacy on the spraying technology in Iraqi agricultural researches: A literature review. Journal of Physics: Conference Series, 1294(9), 092007. https://doi.org/10.1088/1742-6596/1294/9/092007.
  • Vieira, B. C., Butts, T. R., Rodrigues, A. O., Golus, J. A., Schroeder, K. & Kruger, G. R. (2018). Spray particle drift mitigation using field corn (Zea mays L.) as a drift barrier. Pest Management Science, 74(9). https://doi.org/10.1002/ps.5041.
  • Xiao, L., Zhu, H., Wallhead, M., Horst, L., Ling, P. & Krause, C. R. (2018). Characterization of biological pesticide deliveries through hydraulic nozzles. Transactions of the ASABE, 61(3). https://doi.org/10.13031/trans.12698.
  • Yao, W., Lan, Y., Hoffmann, W. C., Li, J., Guo, S., Zhang, H. & Wang, J. (2020). Droplet size distribution characteristics of aerial nozzles by Bell206L4 helicopter under medium and low airflow velocity wind tunnel conditions and field verification test. Applied Sciences (Switzerland), 10(6). https://doi.org/10.3390/app10062179.
  • Yates, W. E., Cowden, R. E. & Akesson, N. B. (1985). Drop size spectra from nozzles in high-speed airstreams. Transactions of the American Society of Agricultural Engineers, 28(2). https://doi.org/10.13031/2013.32268.
Identyfikator YADDA
bwmeta1.element.baztech-43682cf9-65f4-477c-9f45-ee230e4ee169