PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of functionally gradient materials in valve design under cyclic thermal and mechanical loading

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The robust and simple optimization method of functionally graded material (FGM) for combined cyclic thermal and mechanical loading with application to valve design is proposed. The optimization procedure starts from the homogeneous ceramic material distribution and after thermomechanical analysis of the whole process, the new distribution of material is determined by reducing concentration of the ceramic phase at places of high tensile stresses and by increasing ceramic contents at places of high effective stresses. The optimal distribution of ceramic phase is found through iterations. We have shown the numerical example of the proposed method for optimization of a composite exhaust valve of combustion engine. The example illustrates the optimal density distribution of ceramic phase of Al2O3 within NiAl matrix. In the design study we have used the transient analysis of stress and temperature fields. The proposed method shares merits of standard optimization and topology optimization, it allows for creating one phase of material inside the other. It can be especially useful to problems of structural elements subjected to thermomechanical loading histories.
Rocznik
Strony
99--112
Opis fizyczny
Bibliogr. 22 poz., il., tab., wykr.
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
Bibliografia
  • [1] M.P. Bendsøe. Optimization of Structural Topology, Shape, and Material. Springer, 1995.
  • [2] V. Birman, L.W. Byrd. Modeling and analysis of functionally graded materials and structures. Applied Mechanics Reviews, 60 (5): 195–216, 2007.
  • [3] D. Boussaa. Optimizing the composition profile of a functionally graded interlayer using a direct transcription method. Computational Mechanics, 39 (1): 59–71, 2006.
  • [4] M. Burger, B. Hackl, W. Ring. Incorporating topological derivatives in to level set methods. Journal of Computational Physics, 194 (1): 344–362, 2004.
  • [5] N. Chawla, Y.-L. Shen. Mechanical behavior of particle reinforced metal matrix composites. Advanced Engineering Materials, 3 (6): 357–370, 2001.
  • [6] J.R. Cho, D.Y. Ha. Volume fraction optimization for minimizing thermal stress in Ni - Al2O3 functionally graded materials. Materials Science and Engineering: A, 334 (1–2): 147–155, 2002.
  • [7] K. Dems, Z. Mróz. Variational approach to sensitivity analysis in thermoelasticity. Journal of Thermal Stresses, 10 (4): 283–306, 1987.
  • [8] K. Dems, Z. Mróz. Methods of sensitivity analysis. In M. Kleiber, editor, Handbook of Computational Solid Mechanics: Survey and Comparison of Contemporary Methods, pages 673–755. Springer-Verlag, Berlin, 1998.
  • [9] K. Dems, Z. Mróz. Sensitivity analysis and optimal design of external boundaries and interfaces for heat conduction systems. Journal of Thermal Stresses, 21 (3–4): 461–488, 1998.
  • [10] H.A. Eschenauer, N. Olhoff. Topology optimization of continuum structures: A review. Applied Mechanics Reviews, 54 (4): 331–390, 2001.
  • [11] Z. Hashin, S. Shtrikman. A variational approach to the t heory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids, 11 (2): 127–140, 1963.
  • [12] J. Korelc. Multi-language and multi-environment generation of nonlinear finite element codes. Engineering with Computers, 18 (4): 312–327, 2002.
  • [13] Z. Mróz. Variational methods in sensitivity analysis and optimal design. Journal of Mechanics A/Solids, 13 (2): 115–147, 1994.
  • [14] K.-S Na, J.-H Kim. Volume fraction optimization of functionally graded composite panels for stress reduction and critical temperature. Finite Elements in Analysis and Design, 45 (11): 845–851, 2009.
  • [15] S.J. Osher, R. Fedkiw. Level set methods and dynamic implicit surfaces. Springer, New York, 2003.
  • [16] J.H. Rong, Q.Q. Liang. A level set method for topology optimization of continuum structures with bounded design domains. Computer Methods in Applied Mechanics and Engineering, 197 (17–18): 1447–1465, 2008.
  • [17] J.A. Sethian. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics. Cambridge University Press, 1999.
  • [18] M.H. Shojaefard, A.R. Noorpoor, D.A. Bozchaloe, M. Ghaffarpour. Transient thermal analysis of engine exhaust valve. Numerical Heat Transfer, Part A: Applications, 48 (7): 627–644, 2005.
  • [19] W. Szymczyk. Numerical simulation of composite surface coating as a functionally graded material. Materials Science and Engineering: A, 412 (1–2): 61–65, 2005.
  • [20] S. Turteltaub. Functionally graded materials for prescribed field evolution. Computer Methods in Applied Mechanics and Engineering, 191 (21–22): 2283–2296, 2002.
  • [21] M. Yulin, W. Xiaoming. A level set method for structural topology optimization and its applications. Advances in Engineering Software, 35 (7): 415–441, 2004.
  • [22] U. Zrahia, P.B. Yoseph. Alternative designs towards thermal optimization of coated valves using space-time finite elements. International Journal of Numerical Methods for Heat & Fluid Flow, 5 (3): 189–206, 1994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4366e5e6-998c-4114-84bb-50b1be26f4ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.