PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Percolation in Systems Containing Ordered Elongated Objects

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We studied the percolation and jamming of elongated objects using the Random Sequential Adsorption (RSA) technique. The objects were represented by linear sequences of beads forming needles. The positions of the beads were restricted to vertices of two-dimensional square lattice. The external field that imposed ordering of the objects was introduced into the model. The percolation and the jamming thresholds were determined for all systems under consideration. The influence of the chain length and the ordering on both thresholds was calculated and discussed. It was shown that for a strongly ordered system containing needles the ratio of percolation and jamming thresholds cp=cj is almost independent on the needle length d.
Twórcy
  • Department of Chemistry, University of Warsaw Pasteura 1, 02-093 Warsaw, Poland
autor
  • Department of Chemistry, University of Warsaw Pasteura 1, 02-093 Warsaw, Poland
Bibliografia
  • [1] D. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London 1994).
  • [2] L.N. Lisetski, S.S. Minenko, A.P. Fedoryako and N.I. Lebovka, Dispersions of multiwalled carbon nanotubes in different nematic mesogens: The study of optical transmittance and electrical conductivity, Physica E 41, 431 (2009).
  • [3] J.G. Meier, C. Crespo, J.L. Pelegay, P. Castell, R. Sainz, W.K. Maser, A.M. Benito, Processing dependency of percolation threshold of MWCNTs in a thermoplastic elastomeric block copolymer, Polymer 52, 1788 (2011).
  • [4] Matoz-Fernandes , D.H. Linares, A.J. Ramirez-Pastor, Europhys. Lett., Determination of the critical exponents for the isotropic-nematic phase transition in a system of long rods on two-dimensional lattices: Universality of the transition, Europhys.Lett. 82, 50007 (2008).
  • [5] L.G. Lopez, D.H. Linares, A.J. Ramirez-Pastor, S.A. Cannas, Phase diagram of self-assembled rigid rods on twodimensional lattices: Theory and Monte Carlo simulations, J. Chem. Phys. 133, 134706 (2010).
  • [6] V. Cornette, A.J. Ramirez-Pastor, F. Nieto, Dependence of the percolation threshold on the size of the percolating species, Physica A 327, 71 (2003).
  • [7] V. Cornette, A.J. Ramirez-Pastor, F. Nieto, Percolation of polyatomic species on a square lattice, Eur. Phys. J. B 36, 391 (2003).
  • [8] J.W. Evans, Random and cooperative sequential adsorption, Rev. Mod. Phys. 65, 1281 (1993).
  • [9] J. Talbot, G. Tarjus, P.R. Van Tassel, P. Viot, From car parking to protein adsorption: an overview of sequential adsorption processes, Colloid. Surface A 165, 287 (2000).
  • [10] P. Adamczyk, P. Polanowski, A. Sikorski, Percolation in polymer-solvent systems: A Monte Carlo study, J. Chem. Phys. 131, 234901 (2009).
  • [11] M. Pawłowska, S. ˙ Zerko, A. Sikorski, Note: Percolation in two-dimensional flexible chains systems, J. Chem. Phys. 136, 046101 (2012).
  • [12] R.D. Vigil, R.M. Ziff, Random sequential adsorption of unoriented rectangles onto a plane, J. Chem. Phys. 91, 2599 (1989).
  • [13] R.M. Ziff, R.D. Vigil, Kinetics and fractal properties of the random sequential adsorption of line segments, J. Phys. A: Math. Gen. 23, 5103 (1990).
  • [14] N. Vandewalle, S. Galam, M. Kramer, A new universality for random sequential deposition of needles, Eur. Phys. J. B 14, 407 (2000).
  • [15] G. Kondrat, A. Pekalski, Percolation and jamming in random sequential adsorption of linear segments on a square lattice,Phys. Rev. E 63, 051108 (2001).
  • [16] G. Kondrat, A. Pekalski, Percolation and jamming in random bond deposition, Phys. Rev. E 64, 056118 (2001).
  • [17] G. Kondrat, Influence of temperature on percolation in a simple model of flexible chains adsorption, J. Chem. Phys. 117, 6662 (2002).
  • [18] P. Adamczyk, P. Romiszowski, A. Sikorski, A simple model of stiff and flexible polymer chain adsorption: The influence of the internal chain architecture, J. Chem. Phys. 128, 154911 (2008).
  • [19] E.J. Garboczi, K.A. Snyder, J.F. Douglas, M.F. Thorpe, Geometrical percolation threshold of overlapping ellipsoids, Phys. Rev. E 52, 819 (1995).
  • [20] J.-S. Wang, Series expansion and computer simulation studies of random sequential adsorption, Colloid. Surface A 165, 325 (2000).
  • [21] X. Wang, A.P. Chatterjee, Connectedness percolation in athermal mixtures of flexible and rigid macromolecules: Analytic theory, J. Chem. Phys. 118, 10787 (2003).
  • [22] Y.B. Yi, A.M. Sastry, Analytical approximation of the percolation threshold for overlapping ellipsoids of revolution, Proc. Royal Soc. Lond. A 460, 2353 (2004).
  • [23] A. P. Chatterjee, Percolation thresholds for rod-like particles: polydispersity effects, J. Phys.: Condens. Matter 20, 255250 (2008).
  • [24] V.A. Cherkasova, Y.Y. Tarasevich, N.I. Lebovka, N.V. Vygornitskij, Percolation of aligned dimers on a square lattice, Eur. Phys. J. B 74, 205 (2010).
  • [25] N.I. Lebovka, N.N. Karmazina, Y.Yu. Tarasevich, V.V. Laptev, Random sequential adsorption of partially oriented linear k-mers on a square lattice, Phys. Rev. E, 85, 029902 (2012).
  • [26] A. Ghosh, D. Dhar, On the orientational ordering of long rods on a lattice, Eur. Phys. Lett. 78, 20003 (2007).
  • [27] P.Kählitz, H.Stark, Phase ordering of hard needles on a quasicrystalline substrate, J.Chem.Phys. 136, 174705 (2012).
  • [28] Y.Yu. Tarasevich, N.I.Lebovka, V.V. Laptev, Percolation of linear k-mers on a square lattice: From isotropic through partially ordered to completely aligned states, Phys. Rev. E 86, 061116 (2012).
  • [29] J. Hoshen, R. Kopelman, Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm, Phys. Rev. B 14, 3438 (1976).
  • [30] M. Dolz, F. Nieto, A.J. Ramirez-Pastor, Dimer site-bond percolation on a square lattice, Eur. Phys. J. B 43, 363 (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43626c9f-c7a1-4dc6-a993-c13d35e7b3a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.