PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utilising cold sintering process for sintering hydroxyapatite-polyetheretherketone nanocomposite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: A novel technique of very low-temperature sintering named the cold sintering process is used to produce Highly dense hydroxyapatite-polyetheretherketone (HA-PEEK) nanocomposites. The polymers and ceramics are sintered at different temperatures; therefore, it is difficult to create ceramic matrix composites using traditional methods because the high temperatures might damage the polymers. It is hard to concurrently treat polymeric materials at high temperatures because HA often sinters at temperatures exceeding 1000°C. So, the study aimed to use a novel low-temperature sintering named Cold Sintering Process (CSP) with a Ts/ Tm ratio greater than 0.2 to alleviate this issue. This method could offer a production path with quick densification and less energy costs to increase throughput. Design/methodology/approach: In the current work, two different routes are used: The direct mixing and dissolution methods were used for powder preparation to fabricate a unique ceramic matrix composite. The study aimed to determine whether the preparation method could produce two continuous phases for better densification. The sintering temperature, pressure, holding time, and PEEK content were selected as the production parameters. The samples are characterised using a scanning electron microscope (SEM), X-ray energy dispersive spectrometry (EDS), an X-ray diffractogram (XRD), and a transition electron microscope (TEM). Also, physical and mechanical property measurements were detected, including density, water contact angle, hardness, and diametral tensile strength (DTS). Findings: It can be observed that a high densification compact (relative density 99.3%) can be observed by using the dissolution method HA-PEEK composites, which can be produced via the cold sintering process. The dissolution method can produce two continuous phases compared with the direct mixing method. All samples exhibit excellent hydrophilicity, which makes them good candidates for biomedical applications. Research limitations/implications: The biggest implication of the cold sintering method is the difficulty of making large-sized and complex-shaped samples. Practical implications: The dissolution method can produce two continuous phases compared with the direct mixing method. All samples exhibit excellent hydrophilicity, which makes them good candidates for biomedical applications. Originality/value: A novel technique was used for the first time to solve the problem of producing ceramic matrix composites with polymer as the dispersion phase.
Rocznik
Strony
25--41
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • Department of Materials Engineering, University of Technology, Baghdad, Iraq
autor
  • Department of Materials Engineering, University of Technology, Baghdad, Iraq
  • Department of Prosthetics and Orthotics Engineering, College of Engineering, Kerbala University, Iraq
Bibliografia
  • 1. R. Ma, T. Tang, Current strategies to improve the bioactivity of PEEK, International Journal of Molecular Sciences 15/4 (2014) 5426-5445. DOI: https://doi.org/10.3390/ijms15045426
  • 3. R. Ma, D. Guo, Evaluating the bioactivity of a hydroxyapatite-incorporated polyetheretherketone biocomposite, Journal of Orthopaedic Surgery and Research 14/1 (2019) 32. DOI: https://doi.org/10.1186/s13018-019-1069-1
  • 4. W. Akram, R. Zahid, R.M. Usama, S.A. AlQahtani, M. Dahshan, M.A. Basit, M. Yasir, Enhancement of Antibacterial Properties, Surface Morphology and In Vitro Bioactivity of Hydroxyapatite-Zinc Oxide Nanocomposite Coating by Electrophoretic Deposition Technique, Bioengineering 10/6 (2023) 693. DOI: https://doi.org/10.3390/bioengineering10060693
  • 5. S. Kowalski, R. Belka, W. Żórawski, M. Sztorc, A. Góral, M. Makrenek, Microstructural study of plasma sprayed hydroxyapatite coatings, Journal of Achievements in Materials and Manufacturing Engineering 83/2 (2017) 79-84. DOI: https://doi.org/10.5604/01.3001.0010.7035
  • 6. T. Kokubo, H.M. Kim, M. Kawashita, Novel bioactive materials with different mechanical properties, Biomaterials 24/13 (2003) 2161-2175. DOI: https://doi.org/10.1016/S0142-9612(03)00044-9
  • 7. S. Bashar, H. A. Al-Kaisy, and M. N. Al-Shroofy, Preparation of Bio-Composite Coatings on Titanium Substrate by Electrostatic Spray Deposition, Key Engineering Materials 937 (2022) 129-138. DOI: https://doi.org/10.4028/p-224uc8
  • 7. D. Briem, S. Strametz, K. Schröoder, N.M. Meenen, W. Lehmann, W. Linhart, A. Ohl, J.M. Rueger, Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces, Journal of Materials Science: Materials in Medicine 16/7 (2005) 671-677. DOI: https://doi.org/10.1007/s10856-005-2539-z
  • 8. M.N. Obaid, O.H. Sabr, A.A. Hussein, Characteristic of polypropylene nanocomposite material reinforcement with hydroxyapatite for bone replacement, Journal of Achievements in Materials and Manufacturing Engineering 104/1 (2021) 21-30. DOI: https://doi.org/10.5604/01.3001.0014.8483
  • 9. R. Ma, L. Weng, X. Bao, Z. Ni, S. Song, W. Cai, Characterization of in situ synthesized hydroxyapatite/ polyetheretherketone composite materials, Materials Letters 71 (2012) 117-119. DOI: https://doi.org/10.1016/j.matlet.2011.12.007
  • 10. M.S. Abu Bakar, M.H.W. Cheng, S.M. Tang, S.C. Yu, K. Liao, C.T. Tan, K.A. Khor, P. Cheang, Tensile properties, tension-tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants, Biomaterials 24/13 (2003) 2245-2250. DOI: https://doi.org/10.1016/S0142-9612(03)00028-0
  • 11. S.M. Tang, P. Cheang, M.S. AbBakar, K.A. Khor, K. Liao, Tension-tension fatigue behavior of hydroxyapatite reinforced polyetheretherketone composites, International Journal of Fatigue 26/1 (2004) 49-57. DOI: https://doi.org/10.1016/S0142-1123(03)00080-X
  • 12. K.L. Wong, C.T. Wong, W.C. Liu, H.B. Pan, M.K. Fong, W.M. Lam, W.L. Cheung, W.M. Tang, K.Y. Chiu, K.D.K. Luk, W.W. Lu, Mechanical properties and in vitro response of strontium-containing hydroxyapatite/polyetheretherketone composites, Biomaterials 30/23-24 (2009) 3810-3817. DOI: https://doi.org/10.1016/j.biomaterials.2009.04.016
  • 13. R. Ma, S. Tang, H. Tan, W. Lin, Y. Wang, J. Wei, L. Zhao, T. Tang, Y. Pan, Preparation, characterization, and in vitro osteoblast functions of a nano-hydroxyapatite/polyetheretherketone biocomposite as orthopedic implant material, International Journal of Nanomedicine 9/1 (2014) 3949-3961. DOI: https://doi.org/10.2147/IJN.S67358
  • 14. G.L. Converse, W. Yue, R.K. Roeder, Processing and tensile properties of hydroxyapatite-whisker-reinforced polyetheretherketone, Biomaterials 28/6 (2007) 927-935. DOI: https://doi.org/10.1016/j.biomaterials.2006.10.031
  • 15. G.L. Converse, T.L. Conrad, R.K. Roeder, Mechanical properties of hydroxyapatite whisker reinforced polyetherketoneketone composite scaffolds, Journal of the Mechanical Behavior of Biomedical Materials 2/6 (2009) 627-635. DOI: https://doi.org/10.1016/j.jmbbm.2009.07.002
  • 16. G.L. Converse, T.L. Conrad, C.H. Merrill, R.K. Roeder, Hydroxyapatite whisker-reinforced polyetherketoneketone bone ingrowth scaffolds, Acta Biomaterialia 6/3 (2010) 856-863. DOI: https://doi.org/10.1016/j.actbio.2009.08.004
  • 17. S. Yu, K.P. Hariram, R. Kumar, P. Cheang, K.K. Aik, In vitro apatite formation and its growth kinetics on hydroxyapatite/ polyetheretherketone biocomposites, Biomaterials 26/15 (2005) 2343-2352. DOI: https://doi.org/10.1016/j.biomaterials.2004.07.028
  • 18. C. Hengky, B. Kelsen, Saraswati, P. Cheang, Mechanical and biological characterization of pressureless sintered hydroxapatite-polyetheretherketone biocomposite, in: C.T. Lim, J.C.H. Goh (eds), 13th International Conference on Biomedical Engineering, IFMBE Proceedings, vol. 23, Springer, Berlin, Heidelberg, 2009, 261-264. DOI: https://doi.org/10.1007/978-3-540-92841-6_63
  • 19. F.E. Jabri, A. Ouballouch, L. Lasri, R. El Alaiji, A comprehensive review of polymer materials and selective laser sintering technology for 3D printing, Journal of Achievements in Materials and Manufacturing Engineering 118/1 (2023) 5-17. DOI: https://doi.org/10.5604/01.3001.0053.7286
  • 20. K.H. Tan, C.K Chua, K.F Leong, C.M Cheah, P Cheang, M.S Abu Bakar, S.W Cha, Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends, Biomaterials 24/18 (2003) 3115-3123. DOI: https://doi.org/10.1016/S0142-9612(03)00131-5
  • 21. M. Schmidt, D. Pohle, T. Rechtenwald, Selective laser sintering of PEEK, CIRP Annals 56/1 (2007) 205-208. DOI: https://doi.org/10.1016/j.cirp.2007.05.097
  • 22. K.H. Tan, C.K. Chua, K.F. Leong, M.W. Naing, C.M. Cheah, Fabrication and characterization of three-dimensional poly(ether-ether-ketone)/-hydroxyapatite biocomposite scaffolds using laser sintering, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 219/3 (2005) 183-194. DOI: https://doi.org/10.1243/095441105X9345
  • 23. M. Si, J. Hao, E. Zhao, X. Zhao, J. Guo, H. Wang, C.A. Randall, Preparation of zinc oxide/poly-ether-ether-ketone (PEEK) composites via the cold sintering process, Acta Materialia 215 (2021) 117036. DOI: https://doi.org/10.1016/j.actamat.2021.117036
  • 24. J.-P. Maria, X. Kang, R.D. Floyd, E.C. Dickey, H. Guo, J. Guo, A. Baker, S. Funihashi, C.A. Randall, Cold sintering: Current status and prospects, Journal of Materials Research 32/17 (2017) 3205-3218. DOI: https://doi.org/10.1557/jmr.2017.262
  • 25. T. Hérisson de Beauvoir, K. Tsuji, X. Zhao, J. Guo, C. Randall, Cold sintering of ZnO-PTFE: Utilizing polymer phase to promote ceramic anisotropic grain growth, Acta Materialia 186 (2020) 511-516. DOI: https://doi.org/10.1016/j.actamat.2020.01.002
  • 26. S. Funahashi, J. Guo, H. Guo, K. Wang, A.L. Baker, K. Shiratsuyu, C.A. Randall, Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics, Journal of the American Ceramic Society 100/2 (2017) 546-553. DOI: https://doi.org/10.1111/jace.14617
  • 27. T. Hérisson de Beauvoir, S. Dursun, L. Gao, C. Randall, New Opportunities in Metallization Integration in Cofired Electroceramic Multilayers by the Cold Sintering Process, ACS Applied Electronic Materials 1/7 (2019) 1198-1207. DOI: https://doi.org/10.1021/acsaelm.9b00184
  • 28. D. Wang, D. Zhou, S. Zhang, Y. Vardaxoglou, W.G. Whittow, D. Cadman, I.M. Reaney, Cold-Sintered Temperature Stable Na0.5Bi0.5MoO4-Li2MoO4 Microwave Composite Ceramics, ACS Sustainable Chemistry and Engineering 6/2 (2018) 2438-2444. DOI: https://doi.org/10.1021/acssuschemeng.7b03889
  • 29. A. Ndayishimiye, Z.A. Grady, K. Tsuji, K. Wang, S.H. Bang, C.A. Randall, Thermosetting polymers in cold sintering: the fabrication of ZnO-polydimethylsiloxane composites, Journal of the American Ceramic Society 103/5 (2020) 3039-3050. DOI: https://doi.org/10.1111/jace.17009
  • 30. L. Coutinho, R.G. Aredes, E. Antonelli, Cold sintering and electric characterization of ZnO-BaTiO3 composites, Ceramica 67/381 (2021) 105-110. DOI: https://doi.org/10.1590/0366-69132021673813061
  • 31. J. Induja, M.T. Sebastian, Microwave dielectric properties of cold sintered Al2O3-NaCl composite, Materials Letters 211 (2018) 55-57. DOI: https://doi.org/10.1016/j.matlet.2017.09.083
  • 32. N. Guo, H.Z. Shen, Q. Jin, P. Shen, Hydrated precursor-assisted densification of hydroxyapatite and its composites by cold sintering, Ceramics International 47/10 (2021) 14348-14353. DOI: https://doi.org/10.1016/j.ceramint.2021.01.294
  • 33. Y. Deng, Y. Sun, X. Chen, P. Zhu, S. Wei, Biomimetic synthesis and biocompatibility evaluation of carbonated apatites template-mediated by heparin, Materials Science and Engineering: C 33/5 (2013) 2905-2913. DOI: https://doi.org/10.1016/j.msec.2013.03.016
  • 34. E. Papia, S.A.C. Brodde, J.P. Becktor, Deformation of polyetheretherketone, PEEK, with different thicknesses, Journal of the Mechanical Behavior of Biomedical Materials 125 (2022) 104928. DOI: https://doi.org/10.1016/j.jmbbm.2021.104928
  • 35. Y. Zheng, C. Xiong, S. Zhang, X. Li, L. Zhang, Bone-like apatite coating on functionalized poly(etheretherketone) surface via tailored silanization layers technique, Materials Science and Engineering: C 55 (2015) 512-523. DOI: https://doi.org/10.1016/j.msec.2015.05.070
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-436237ae-1112-4afe-a47c-2527d02ec83d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.