Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Land cover changes in watersheds can affect various hydrological aspects, such as river flow, sedimentation, and water quality. Land cover changes from forests to farmlands or settlements can cause significant changes in local hydrological cycles. This study aims to analyze the dynamics of land cover change and its impact on the hydrological conditions in the Tiworo watershed. The study was conducted in the Tiworo watershed, covering Muna and West Muna Regencies, with an area of 25,445.84 Ha. Using the soil and water assessment tool (SWAT), the results of the study for the period from 2017 to 2022 showed no groundwater flow. This condition reflects a potential issue with the groundwater parameters in the model or a lack of groundwater recharge during this period. However, as rainfall increases, groundwater loss is influenced by land conversion to settlements and the mixing of dryland agriculture with shrubs, ponds, and rice fields. The magnitude of surface runoff, the decrease in lateral flow (interflow), water yield, and the reduction in infiltration processes increased the fluctuations in Qmax (m3/s), Qmin (m3/s), and the flow regime coefficient (KRA) in the Tiworo watershed.
Wydawca
Rocznik
Tom
Strony
14--26
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- Department of Forestry Science, Faculty of Forestry, Hasanuddin University, Makassar 90245, Indonesia
autor
- Department of Forestry Science, Faculty of Forestry, Hasanuddin University, Makassar 90245, Indonesia
autor
- Department of Forestry Science, Faculty of Forestry, Hasanuddin University, Makassar 90245, Indonesia
autor
- Department of Forestry Science, Faculty of Forestry and Environment, Haluoleo University, Kendari 93232, Indonesia
Bibliografia
- 1. Ade Liya Intan Sari, Donny Harisuseno, and Ussy Andawayanti. 2024. Hydroxy Modeling of Gandong Watershed with Soil and Water Assessment Tool (ArcSWAT). Journal of Water Resources Technology and Engineering 4(1).813–822. https://doi.org/10.21776/ub.jtresda.2024.004.01.069
- 2. Adjovu, G. E., Stephen, H., James, D., & Ahmad, S. (2023). Overview of the Application of Remote Sensing in Effective Monitoring of Water Quality Parameters. Remote Sensing, 15(7). https://doi.org/10.3390/rs15071938
- 3. Alshammari, E., Abdul Rahman, A., Rainis, R., Abu Seri, N., & Ahmad, F. (2024). Investigation of Runoff and Flooding in Urban Areas based on Hydrological Models: A Literature Review. International Journal of Geoinformatics, 20(1), 99–119. https://doi.org/10.52939/ijg.v20i1.3033
- 4. Anaba, L. A., Banadda, N., Kiggundu, N., Wanyama, J., Engel, B., & Moriasi, D. (2017). Application of SWAT to assess the effects of land use change in the Murchison Bay catchment in Uganda. Computational Water, Energy, and Environmental Engineering, 06(01), 24–40. https://doi.org/10.4236/cweee.2017.61003
- 5. J. G. Arnold, D. N. Moriasi, P. W. Gassman, K. C. Abbaspour, M. J. White, R. Srinivasan, C. Santhi, R. D. Harmel, A. van Griensven, M. W. Van Liew, N. Kannan, & M. K. Jha. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491–1508. https://doi.org/10.13031/2013.42256
- 6. Babaremu, K. O. (2024). A Review of Current Understanding and Implications for Watershed and Water. March. https://doi.org/10.5281/zenodo.10049652
- 7. Deng, Z., Zhu, X., He, Q., & Tang, L. (2019). Land use/land cover classification using time series Landsat 8 images in a heavily urbanized area. Advances in Space Research, 63(7), 2144–2154. https://doi.org/10.1016/j.asr.2018.12.005
- 8. Gao, G., Li, J., Feng, P., Liu, J., & Wang, Y. (2024). Impacts of climate and land-use change on flood events with different return periods in a mountainous watershed of North China. Journal of Hydrology: 55(July), 101943. https://doi.org/10.1016/j.ejrh.2024.101943
- 9. Gu, P., Wu, Y., Liu, G., Xia, C., Wang, G., Xia, J., Chen, K., Huang, X., & Li, D. (2022). Application of meteorological element combination-driven SWAT model based on meteorological datasets in alpine basin. Water Supply, 22(3), 3307–3324. https://doi.org/10.2166/WS.2021.397
- 10. Hatheway, A. W. (1999). Manufactured gas in California, 1852-1940: Basis for remedial action. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 3(3), 132–146. https://doi.org/10.1061/(ASCE)1090-025X(1999)3:3(132)
- 11. Khadka, D., Babel, M. S., & Kamalamma, A. G. (2023). Assessing the Impact of climate and land-use changes on the hydrologic cycle using the SWAT model in the Mun River Basin in Northeast Thailand. 15(20). https://doi.org/10.3390/w15203672
- 12. La Baco.S., Indriyani, L., . K., Surya, R. A., Manan, A., and Muhammad Erif, L. O. 2022. Optimization of functions and carrying capacity of watershed areas performance development of jompi watershed and tiworo watershed management Southeast Sulawesi province cooperation forest service of Southeast Sulawesi province with research and community service institution. Halu Oleo University Kendari Year 2022
- 13. Li, B., Marek, G. W., Marek, T. H., Porter, D. O., Ale, S., Moorhead, J. E., Brauer, D. K., Srinivasan, R., & Chen, Y. (2023). Impacts of ongoing land-use change on watershed hydrology and crop production using an improved SWAT model. Land, 12(3). https://doi.org/10.3390/land12030591
- 14. Li, W., Li, L., Chen, J., Lin, Q., & Chen, H. (2021). Impacts of land use and land cover change and reforestation on summer rainfall in the Yangtze River basin. Hydrology and Earth System Sciences, 25(8), 4531– 4548. https://doi.org/10.5194/hess-25-4531-2021
- 15. Li, Y., Chang, J., Luo, L., Wang, Y., Guo, A., Ma, F., & Fan, J. (2019). Spatiotemporal impacts of land use land cover changes on hydrology from the mechanism perspective using SWAT model with time-varying parameters. Hydrology Research, 50(1), 244–261. https://doi.org/10.2166/nh.2018.006
- 16. Li, B., Marek, G. W., Marek, T. H., Porter, D. O., Ale, S., Moorhead, J. E., Brauer, D. K., Srinivasan, R., & Chen, Y. (2023). Impacts of ongoing land-use change on watershed hydrology and crop production using an improved SWAT model. Land, 12(3), 591. https://doi.org/10.3390/land12030591
- 17. M’barek, S. A., Rochdi, A., Bouslihim, Y., & Miftah, A. (2021). Multi-site calibration and validation of swat model for hydrologic modeling and soil erosion estimation: A case study in el grou watershed, morocco. Ecological Engineering and Environmental Technology, 22(6), 45–52. https://doi.org/10.12912/27197050/141593
- 18. Munajat Nursaputra, A. Muhammad Syahrul R., Syamsu Rijal, M.F. (2024). Spatial-based hydrological modeling for flood-prone area identification and analysis in the Lamasi watershed. Jurnal Sains Informasi Geografi 7(2), 83–98.
- 19. Pawitan, H. (2004). Land use changes and their impacts on watershed hydrology. Laboratorium Hidrometeorologi FMIPA IPB. Bogor, 65–80.
- 20. Pindi, S., & Jayakumar, K. V. (2023). Modelling runoff and sedimentation yield using soil and water assessment tool for Wyra River basin. Ecological Engineering and Environmental Technology, 24(5), 84–93. https://doi.org/10.12912/27197050/165776
- 21. Pribadi, A. D., Kusumawati, R. D., & Firdausi, A. A. (2020). Pengaruh Perubahan Tutupan Lahan Terhadap Karakteristik Hidrologi Di Das Sampean Kabupaten Bondowoso. Jurnal Ilmiah Desain & Konstruksi, 19(2), 84–101. https://doi.org/10.35760/dk.2020.v19i2.3492
- 22. Purwitaningsih, S., & Pamungkas, A. (2017). Analisis Kondisi Hidrologi Daerah Aliran Sungai Kedurus untuk Mengurangi Banjir Menggunakan Model Hidrologi SWAT. Jurnal Teknik ITS, 6(2). https://doi.org/10.12962/j23373539.v6i2.24809
- 23. Putra, R., Wignyosukarto, B. S., & Legono, D. (2022). Delineation and Evaluation of Land Use and Spatial Patterns on the Flood Plains in the City of Sungai Lilin. Journal of Civil Engineering and Planning, 3(2), 107–117. https://doi.org/10.37253/ jcep.v3i2.6353
- 24. Regulation of the Minister of Forestry Number P.61/ Menhut-II/2013. 2013.
- 25. Rau, M., Pandjaitan, N., & Sapei, A. (2015). Discharge analysis using SWAT model at Cipasauran watershed, Banten. Jurnal Keteknikan Pertanian, 3(2), 1–8. https://doi.org/10.19028/jtep.03.2.113-120
- 26. Salim, A. G., Dharmawan, I. W. S., & Narendra, B. H. (2019). Effect of changes in forest land cover area on the hydrological characteristics of the Citarum Hulu watershed. Journal of Environmental Sciences 17(2), 333. https://doi.org/10.14710/jil.17.2.333-340
- 27. Statistics Indonesia (BPS) of Muna Regency. (2023). Muna Regency in Figures 2023. BPS Muna Regency, 1–392.
- 28. Statistics Indonesia (BPS) of West Muna Regency. (2023). West Muna Regency in Figures 2023. BPS West Muna Regency.
- 29. Soma, A. S., Chaeruddin, A. A., & Wahyuni. (2023). Analysis of the quality of the mamasa sub-watershed using the land cover approach and land cover projections in 2031. IOP Conference Series: Earth and Environmental Science, 1277(1), 0–14. https://doi.org/10.1088/1755-1315/1277/1/012023
- 30. Soma, A. S., Wahyuni, & Musdalifah. (2021). Prediction of erosion and sedimentation rates using SWAT (soil and water assessment tool) method in Malino Sub Watershed Jeneberang Watershed. IOP Conference Series: Earth and Environmental Science, 886(1). https://doi.org/10.1088/1755-1315/886/1/012103
- 31. Son, N. T., Le Huong, H., Loc, N. D., & Phuong, T. T. (2022). Application of SWAT model to assess land use change and climate variability impacts on hydrology of Nam Rom Catchment in Northwestern Vietnam. Environment, Development and Sustainability, 24(3), 3091–3109. https://doi.org/10.1007/s10668-021-01295-2
- 32. Staddal, I. (2016). Surface runoff analysis using the SWAT model in the Bila watershed, South Sulawesi. JTech, 4(1), 57–63. https://doi.org/10.30869/jtech. v4i1.53
- 33. Susanti, Y., Syafrudin, & Helmi, M. (2020). Analysis of land use change in upper serayu watersheds using remote sensing and geographic information systems. Bioedukasi 12(1), 23–20. https://doi.org/10.20961/bioedukasi-uns.v13i1.37825
- 34. Utami, W. U., Dwi Wahjunie, E., and Darma Tarigan, S. 2020. Characteristics of hydrology and its management with the soil and water assessment tool hydrology model of the Cisadane Hulu sub watershed. Indonesian Journal of Agricultural Sciences 25(3): 342–348.. https://doi.org/10.18343/ipi.25.3.342
- 35. Yang, Y. (2019). Analysis of land use change based on Landsat 8. IOP: Earth and Environmental Science, 300(2). https://doi.org/10.1088/1755-1315/300/2/022105
- 36. Zhang, H., Wang, B., Liu, D. L., Zhang, M., Leslie, L. M., & Yu, Q. (2020). Using an improved SWAT model to simulate hydrological responses to land use change: A case study of a catchment in tropical Australia. Journal of Hydrology, 585(March), 124822. https://doi.org/10.1016/j.jhydrol.2020.124822
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-435ebc68-ad8f-4895-a14d-85e0e4b1367f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.