Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The studies showed that alkaline lipase from Pseudomonas fluorescens enables an irreversible transesterification of vinyl esters to give enantiomeric excess (eeR) of about 80% using vinyl butyrate as acyl donor and diisopropyl ether as a solvent, at partially optimized conditions. For the native lipase the process was adequately described by a five-parameter Ping-Pong Bi Bi model for both enantiomers plus expression accounting for the formation of enzyme-acyl donor complex, but for the same lipase supported on mesoporous materials of SBA-15-Oc type, R-product inhibition also had to be taken into account. The use of hydrophobic support increased by more than two-fold the rate of the S-solketal conversion but even more that of R-solketal. Thus the immobilization of lipase had very positive effect on the process kinetics but decreased its enantioselectivity.
Czasopismo
Rocznik
Tom
Strony
209--215
Opis fizyczny
Bibliogr. 11 poz., rys., tab.
Twórcy
autor
- Department of Chemical Engineering and Process Design, Silesian University of Technology, 44-100 Gliwice, Ks. M. Strzody 7, Poland
autor
- Department of Chemical Engineering and Process Design, Silesian University of Technology, 44-100 Gliwice, Ks. M. Strzody 7, Poland
autor
- Department of Chemical Engineering and Process Design, Silesian University of Technology, 44-100 Gliwice, Ks. M. Strzody 7, Poland
autor
- Department of Bioroganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, 50-370 Wrocław, Wybrzeże Wyspiańskiego 27, Poland
autor
- Department of Chemical Engineering and Process Design, Silesian University of Technology, 44-100 Gliwice, Ks. M. Strzody 7, Poland
autor
- Department of Chemical Engineering and Process Design, Silesian University of Technology, 44-100 Gliwice, Ks. M. Strzody 7, Poland
- Department of Bioroganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, 50-370 Wrocław, Wybrzeże Wyspiańskiego 27, Poland
Bibliografia
- 1. Adlercreutz P., 2013. Immobilization and application of lipases in organic media. Chem. Soc. Rev., 42, 6406-6436. DOI: 10.1039/c3cs35446f.
- 2. Barros D.P.C., Lemos F., Fonseca L.P., Cabral J.M.S., 2010. Kinetic cutinase-catalyzed esterification of caproic acid in organic solvent system. J. Mol. Catal. B: Enzym., 66, 285-293. DOI: 10.1016/j.molcatb.2010.06.005.
- 3. Boncel S., Zniszczoł A., Szymańska K., Mrowiec-Białoń J., Jarzębski A., Walczak K., 2013. Alkaline lipase from Pseudomonas fluorescens non-covalently immobilised on pristine versus oxidised multi-wall carbon nanotubes as efficient and recyclable catalytic systems in the synthesis of Solketal esters. Enzyme Microb. Technol., 53, 263-270. DOI: 10.1016/j.enzmictec.2013.05.003.
- 4. Hanson R.M., 1991. The synthetic methodology of nonracemic glycidol and related 2,3-epoxy alcohols. Chem. Rev., 91, 437-475. DOI: 10.1021/cr00004a001.
- 5. Hof R.P., Kellog R.M., 1996. Synthesis and lipase-catalyzed resolution of 5-(hydroxymethyl)-1,3-dioxolan-4- ones: Masked glycerol analogs as potential building blocks for pharmaceuticals. J. Org. Chem., 61, 3423-3427. DOI: 10.1021/jo952021v.
- 6. Hydziuszko Z., Dmytryk A., Majewska P., Szymańska K., Liesiena J., Jarzębski A., Bryjak J., 2014. Screening of lipase carriers for reactions in water, biphasic and pure organic solvent systems. Acta Biochim. Polonica, 61(1), 1-6.
- 7. Majewska P., Kafarski P., Lejczak B., 2006. Simple and effective method for the deracemization of ethyl-1- hydroxyphosphinate using biocatalysts with lipolitic activity. Tetrahedron Asymmetry, 17, 2870-2875. DOI: 10.1016/j.tetasy.2006.10.041.
- 8. Paiva A.L., Balcao V.M., Malcata F.X., 2000. Kinetics and mechanisms of reactions catalyzed by immobilized lipases. Enzyme Microb. Technol., 27, 187-204. DOI: 10.1016/S0141-0229(00)00206-4.
- 9. Pilarek M., Szewczyk K.W., 2007. Kinetic model of 1,3-specific triacylglycerols alcoholysis catalyzed by lipases. J. Biotechnol., 127, 736-744. DOI: 10.1016/j.jbiotec.2006.08.012.
- 10. Zniszczoł A., 2015. Otrzymywanie estrów solketalu wobec lipaz natywnych oraz immobilizowanych na nośnikach stałych. Ph.D. thesis, Silesian University of Technology, Gliwice.
- 11. Zniszczoł A., Herman A.P., Szymańska K., Mrowiec-Białoń J., Walczak K., Jarzębski A., Boncel S., 2016. Covalently immobilized lipase on aminoalkyl-, carboxy- and hydroxy-multi-wall carbon nanotubes in the enantioselective synthesis of solketal esters. Enzyme Microb. Technol., 87, 61-69. DOI: 10.1016/j.enzmictec.2016.02.015.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43586280-63a5-4b24-916a-a96df91c9d42