PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compare of shielding effectiveness for building materials

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Porównanie skuteczności ekranowania materiałów budowlanych
Języki publikacji
EN
Abstrakty
EN
During the 1990s, most electromagnetic field research focused on extremely low frequency exposures stemming from conventional power sources, such as power lines, electrical substations, or home appliances. Now, in the age of mobile telephones, wireless routers, and portable GPS devices (all known sources of EMF radiation), concerns regarding a possible connection between EMFs and adverse health effects still persist. This paper deals with compare the shielding effectiveness of various building materials. Measurements were performed into non-reflection chamber for frequency - 1,5 GHz 2 GHz, 2,5 GHz, 3 GHz and 3,5 GHz. Measurements were performed according to the IEEE Standard, Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures. Measurements were performed in the non-reflection chamber in order to avoid the exterior influence.
PL
Niniejszy artykuł dotyczy porównania skuteczności ekranowania różnych materiałów budowlanych. Pomiary przeprowadzono w komorze bezodbicia dla częstotliwości - 1,5 GHz 2 GHz, 2,5 GHz, 3 GHz i 3,5 GHz. Pomiary przeprowadzono zgodnie ze Standardem IEEE, Metodą Pomiaru Skuteczności Obudów Ekranów Elektromagnetycznych. Pomiary przeprowadzono w komorze bezodbiciowej, aby uniknąć wpływu zewnętrznego.
Rocznik
Strony
137--140
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Department of Electric Power Engineering, Faculty of Electrical Engineering and Informatics, Technical university of Kosice
Bibliografia
  • [1] HAO, C., DENGHUA, L., Simplified Model of Shielding Effectiveness of a Cavity with Apertures on Different Sides, IEEE Transactions on Electromagnetic Compatibility, Vol.56, No.2, 2014, pp.615-621, ISSN: 0018-9375.
  • [2] CELOZZI, S., ARANEO, R., Alternative Definitions for the Time-Domain Shielding Effectiveness of Enclosures, IEEE Transactions on Electromagnetic Compatibility, Vol.56, No.2, pp.482-485, 2014, ISSN: 0018-9375.
  • [3] LIPTAI, P. et al., Impact analysis of the electromagnetic fields of transformer stations close to residential buildings, SGEM 2014: 14th international multidiscilinary scientific geoconference : GeoConference on Ecology, Economics, Education and Legislation : conference proceedings : pp. 17- 26. june, 2014, Albena, Bulgaria. - Sofia : STEF92 Technology, pp. 355-360. - ISBN 978-619-7105-17-9.
  • [4] KRAWCZYK, A., MIASKOWSKI, A., The Influence of the Electromagnetic Wave Polarization on SAR in Human Body Model, Przegląd Elektrotechniczny, Vol. 2006, No. 05, pp. 61- 62, ISSN 0033-2097.
  • [5] KOZIOROWSKA, A., KOZIOL, K., GNIADY, S. and ROMEROWICZ-MISIELAK, M., An electromagnetic field with a frequency of 50 Hz and a magnetic induction of 2.5 mT affects spermatogonia mouse cells (GC-1spg line), Przegląd Elektrotechniczny, Vol. 2018, No. 06, pp. 132-135, ISSN 0033- 2097.
  • [6] HAO, C., DENGHUA, L., Simplified Model of Shielding Effectiveness of a Cavity with Apertures on Different Sides, IEEE Transactions on Electromagnetic Compatibility, Vol.56, No.2, 2014, s.615-621, ISSN: 0018-9375.
  • [7] PAVLÍK, M. et al., Measuring of Dependence of Shielding Effectiveness of Wet Materials on The Frequency of Electromagnetic Field in the High Frequency Range, Acta Electrotechnica et Informatica. Vol. 13, No. 3, 2013, pp. 12-16, ISSN 1335-8243.
  • [8] MEDVEĎ D., KANÁLIK M., Measurement of power quality on the COTEK S1500-124 Inverter’s terminals in case of linear load supplying, In: Universal Journal of Electrical and Electronic Engineering, Vol. 2, no. 4 (2014), p. 178-182. - ISSN 2332- 3280.
  • [9] IEEE 299-2006 Standard: Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures, EMC Society, New York 2006, p.39.
  • [10] LIPTAI, P., et al., Impact analysis of the electromagnetic fields of transformer stations close to residential buildings, SGEM 2014, 14th international multidiscilinary scientific geoconference, Vol. 1, Issue 5 (2014), Albena, Bulgaria. p. 355-360., ISSN 1314-2704.
  • [11] GUAMG, Y., Analysis of Electromagnetic Field on the Permeability Test of Concrete, Power and Energy Engineering Conference (APPEEC), Asia-Pacific, Shanghai, 27-29 march, 2012, pp. 1-2, ISSN:2157-4839.
  • [12] LUMNITZER, E., LIPTAI, P., DRAHOŠ, R., Measurement and Assessment of Pulsed Magnetic Fields in the Working Environment, Elektroenergetika 2015, pp. 331-333. - ISBN 978- 80-553-2187-5.
  • [13] TUMAŃSKI, S., Modern magnetic field sensors – a review, Przegląd Elektrotechniczny, Vol. 2013, No. 10, pp. 1-12, ISSN 0033-2097.
  • [14] TADEUSZ, W., JANUKIEWICZ, M., Methods for Evaluating the Shielding Effectiveness of Textiles, Fibres and Textiles in Eastern Europe, Vol.14, No.5, 2006, ISSN: 1230-3666.
  • [15] BAMBYNEK, D., JAKUBAS, A., JABLONSKI, P., Examination of the possibilities to shield the electromagnetic field by selected polymer composites, Przegląd Elektrotechniczny, Vol. 2017, No. 01, pp. 121-124, ISSN 0033-2097.
  • [16] KOVAČ, D., et al. "An Automated Measuring Laboratory (VMLab) in Education." International Journal Of Engineering Education 32.5 (2016): 2250-2259.
  • [17] DOLNÍK, B., Electromagnetic compatibility. (Elektromagnetická kompatibilita), Technical university of Kosice, 2013, monography. ISBN 978-80-8086-221-3.
  • [18] ZBOJOVSKÝ, J., LIPTAI, P., MORAVEC, M., Modelling and calculating the shielding effectiveness of building materials, Technical sciences and technologies. Vol. 6, no. 4 (2016), p. 205-210. - ISSN 2411-5363.
  • [19] KISIELEWICZ, T., et al., Lightning electromagnetic pulse (LEMP) influence on the electrical apparatus protection, Przegląd Elektrotechniczny, Vol. 2014, No. 01, pp. 1-4, ISSN 0033-2097.
  • [20] CIMBALA, R., GERMAN-SOBEK, M. and BUCKO, S., The Assessment of influence of thermal aging to dielectric properties of XLPE insulation using dielectric relaxation spectroscopy, Acta Electrotechnica et Informatica. Vol. 15, No. 3 (2015), s. 14-17. - ISSN 1335-8243.
  • [21] KOVÁČ, D., et al., Circuit elements influence on optimal number of phases of DCDC buck converter, In: Electronics Letters. Vol. 54, no. 7 (2018), p. 435-436. - ISSN 0013-5194.
  • [22] ČEŠKOVIČ, M., BUCKO, S., MIĽO, M., LABUN, J., Antennas for UAV application, In: Aeronautika 17. - Lublin : University College of Enterprise and Administration, 2017 P. 230-237. - ISBN 978-83-60617-49-6
  • [23] TOMČÍKOVÁ, I., BEREŠ, M., KOVÁČOVÁ, I. and MELNYKOV, V., Interaction between magnetic and stress field in ferromagnetic core of magnetoelastic pressure force sensor, International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk, 2017, pp. 124-127. doi: 10.1109/MEES.2017.8248868
  • [24] ŠPES, M. et al., Impact of enviromental condition on the capacity of power lines, In: Acta Electrotechnica et Informatica. Vol. 17, No. 3 (2017), pp. 3-7. - ISSN 1335-8243.
  • [25] BEREŠ, M. and KOVÁČ, D., Digital pulse generator for multiphase bost converter, Acta Electrotechnica et Informatica. Vol. 14, No. 4 (2014), s. 46-51. - ISSN 1335-8243.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-434b505a-5c29-4e5f-a323-1e7cd2a8c7e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.