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ABSTRACT
In this paper, we present a case study, showing step by step, how to speed up Dijkstra’s method by parallelizing 
its computation and using different data structures. We compare basic algorithm with its bidirectional version 
and investigate two- and-multi-thread implementations based on Fibonacci heaps and regular priority queues. 
Experimental results obtained for artificially generated graphs as well as real-world road network data are presented 
and described.
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1. Introduction

Shortest path algorithms, though potentially applied to 
any static networks, are very often used in IP network routing 
protocols, route planning in road networks, and even Intelligent 
Transportation Systems [4]. In fact, such methods can be 
considered as the very basis of the graph theory with many 
practical applications [3]. In this article we focus on one of these 
methods, namely Dijkstra’s algorithm, used to find the quickest 
connection in transportation network modelled as a graph with 
travel times on its edges, or shortest route in a road network.

Classical Dijkstra’s algorithm is the most popular and 
simultaneously the most efficient sequential method on digraphs 
with nonnegative weights [2]. It is easy to notice, that a typical 
road network can be represented by a graph with vertices at the 
crossings and edges modelling streets. Each edge has its weight 
cost. Moving from one vertex to another is possible only if they are 
connected with an edge. Finding the path between two vertices is 
then finding all the edges connecting the source and destination 
vertex. The length of the path is defined as the sum of all weights 

on the route. Hence, the Dijkstra’s algorithm can be easily applied 
to solve such problems.

The paper is organized as follows: we start with presenting 
a short description of the basic Dijkstra’s algorithm and its 
modification. In particular, the ideas behind effective speeding 
up the algorithm are explained. Then, a description of the 
implementation of considered methods with the use of LEDA [8] 
and Boost [7] libraries is given. The following section describes the 
experiments performed for the implemented algorithm variants 
and makes an attempt to explain the results. In the last section we 
summarize and conclude the article.

2. Dijkstra’s algorithm

In the Dijkstra’s algorithm the vertices of the graph are 
organized into a priority queue [2, 4, 6]. At the beginning of the 
algorithm the distances for all vertices, save the source one, are set 
to infinity. The source node distance is zero. 

In typical implementation each vertex is assigned a status: not_
visited (the node hasn’t been taken into account during the run of 
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the algorithm), labeled (the distance from the source to the labeled 
vertex has been already calculated), or visited (the node has been 
chosen as one of the vertices nearest to the source one). The tentative 
distances for each vertex are also maintained by the algorithm.

2.1. Basic Version

In each run of the loop, a vertex with the smallest distance 
is considered. Then all the nodes connected to this vertex are 
checked, whether their costs are larger than the summed distances. 
If their tentative distances are modified, the priority queue has to 
be reorganized.

The distance (or time) from the node i to the node j is denoted 
as w(i,j), while the distance between the source vertex and the 
given node v is denoted as d(v). The whole procedure of the 
Dijkstra’s algorithm is then as follows [5]:

1. Start with initializing d(v) for each v as “infinity” (maximum 
of double type). For the source node we set d(start) = 0.

2. Create a priority queue containing all the vertices, where the 
priority is given as d(v).

3. Pick a vertex u with the smallest d(v).
4. All outgoing edges of u are relaxed and the times d(u) + w(u,v) 

are compared with d(v). If the value in the vertex v is larger, 
then d(v) is set to w(u,v) + d(u). To help in calculating the 
shortest path, the predecessor u and the edge (u,v) are mainta-
ined in v. The vertex u is removed.

5. If the queue is not empty, go to step 3, otherwise go to step 6.
6. Calculate the shortest path from the destination to the source 

vertex, using pointers to the preceding nodes. 

2.2. Bidirectional Dijkstra (one thread)

In this case we consider two separate priority queues [4]. Basic 
Dijkstra’s method is executed simultaneously from the source 
and from the target vertex. If some node is reached from both 
directions, the algorithm stops.

The first queue is used in the forward search from the source 
node and the second one in the backward search starting from the 
destination node. The algorithm picks and processes a vertex from 
the first priority queue, then picks and processes the vertex from 
the second queue. In such approach the objects of the type Node 
should also store the information about the search direction. The 
solution can be found, when one search picks a vertex that already 
has been processed by another direction.

2.3. Bidirectional Dijkstra (two-threaded)

Bidirectional search is implemented with two threads using 
separate priority queues. Each thread performs a search in one 
direction, so there is no need of mutex-based synchronization. 
Both threads work in parallel, so if one search picks a vertex already 
processed by another one, bool type variable is set to true. The variable 
is accessible by two threads, so once it is set, both searches stop. 

2.4. Multithreaded Dijkstra

In the multithreaded approach the basic graph is divided into a 
set of subgraphs [2, 5]. For each subgraph, a separate thread, with 
its own priority queue, is called. Finding the smallest element in the 
whole graph is implemented by finding the smallest elements in 
each subgraph and comparing them. Then, the thread responsible 
for the chosen node, processes the vertices connected to it. All the 
calculations for given vertices are divided between threads.

The running time of the Dijkstra’s algorithm without using 
self-organizing data containers is O(V2) [2, 4], because searching 
for the smallest element takes O(V), as well as recalculating 
the vertices. If the algorithm is parallelized, the running time 
depends on the number P of subgraphs. Then, finding the smallest 
element takes O(log(P)), and updating the values at vertices takes 
O(V/P). For the procedure performed V times we obtain finally 
O(V2/P + V log(P)).

3. Implementation

The algorithms were implemented in C++ under MS Visual 
Studio 2012 with the use of LEDA [8] and Boost [7] libraries. 

Searching for the shortest path is performed in a graph described 
by objects from LEDA library. We defined additional classes Node 
and Edge, based on the node and edge classes (elements of the graph 
class) of LEDA, to model the graphs being analyzed. Class Node 
consists of an object of the node class of LEDA library and additional 
elements used to implement Dijkstra’s algorithm: node ID,  latitude, 
longitude, node status in the Dijkstra’s algorithm (possible values 
not_visited, labeled, visited), time of reaching a given node on the 
path. Additional elements used to extract the shortest path after the 
algorithm finished are the node predecessor on the path and the 
edge between the preceding and current node. In the bidirectional 
Dijkstra’s search additional variable  describing the search direction 
is used.

The Edge class consists of an object of the edge class from 
LEDA and additional elements used in the Dijkstra’s method: ID 
of the node the edge points from, ID of the node the edge points 
to, maximal speed on the edge and the length of the edge.

Two arrays are used to store elements of Node and Edge types. In 
the class Network the basic graph and all the methods of calculating 
the shortest path in the graph are included. In particular, the class 
consists of the graph sizes, and dynamic arrays of pointers to vertices 
and edges.

3.1. Fibonacci heap

In the Dijkstra’s algorithm, Fibonacci heaps can be used 
instead of regular priority queues. In such a case, the running time 
of the method with Fibonacci heaps is O(nlogn + m), where n is 
the number of nodes, and m is the number of edges in the whole 
graph [1,2]. Fibonacci Heap data container was implemented with 
the use of boost library.

In the Fibonacci heap all the elements are sorted in a selected 
order, after a new element is inserted into the container. When the 
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elements are simple numbers, the only thing to be done is defining 
a heap as: 
However, when one needs to store some more sophisticated 
objects, the elements of the class which are to be sorted, have to be 
specified. This is why a special structure 

 had to be created. Additional method takes two class elements 
as input arguments, and returns bool type value. In this case, the 
elements are sorted according to  the 
time of the path from the starting to the current vertex. If two 
elements of the heap have the same values, their ID numbers are 
compared. A structure with the given method has to be introduced 
as one of the Fibonacci heap parameters.

In the Boost library one may found many utilities to use the 
heap. Function push(…) after adding an element returns its 
handler. To enable a free access to such a type, a handler being an 
element of a heap needs to be defined.

Each element of the class Node needs a handler to itself from 
the Fibonacci heap. The handler type should be declared earlier 
but during such declaration one needs a call to the elements of 
a Fibonacci heap (objects of Node class), as parameters. To avoid 
such mutual calls and declarations a new class 

 was implemented.
The problem was then solved as follows: at the beginning, 

the Node class with a pointer to the new class was declared. 
Then Komparator structure, handler type fib_handle, and finally 
Fibonacci_Heap_Handler class were declared. 

3.2. Search method implementation

Searching for the shortest path in a graph is implemented in the 
methods of the Network class. Each function takes as its parameters 
IDs of the source and destination nodes. Basic implementation 
of the Dijkstra’s algorithm uses set container from standard std 
library as a priority queue. The first step is initialization of nodes 
and corresponding weights (travel times) with the starting node 
initialized to 0. Then all the vertices are formed in a priority queue 
and the main body of the algorithm starts, taking the vertices 
one by one from the queue, until it is empty. The elements in the 
queue are sorted by the  m_dCurrentTravelTime, so the nodes that 
haven’t been considered, with the value set to double limit, are at 
the end of the queue. Then we need to find the nodes connected to 
the element currently considered. In the next step the chosen node 
is checked and if the value in this vertex is larger than the summed 
path length, it is replaced by the smaller value. After the value is 
changed, the pointer to the preceding vertex and the pointer to the 
edge leading to the considered node, are also stored. At last, the 
chosen node is removed from the top of the queue. The method 
finishes when the source vertex is chosen from the data container.

3.2.1 Bidirectional Dijkstra’s algorithm, one 
thread

In this method two search directions are implemented: 
from the source to destination node and backwards, from the 
destination to the source vertex. After the initialization similar to 
the one of basic Dijkstra, two priority queues are created. Both 

queues contain all the vertices, however, one queue sorts its 
elements by m_dCurrentTravelTime while another is sorted by m_
dCurrentTravelTime_backward. The rest of the code is very similar 
to the basic Dijkstra’s implementation, but the method ends when 
it finds connection between forward and backward search. If a 
node has been already considered by the opposite direction, it 
stays unchanged. This method needs also additional phase, because 
during the backward search, pointers to the following, not preceding, 
vertices and edges are stored. Starting from the connection of both 
directions, the vertices are shifted to the source node.

3.2.2 Bidirectional Dijkstra’s algorithm with 
two threads

In this method two threads, working in parallel, are applied. The 
threads are called with the use of Boost library. In one thread the 
forward search, and in another the backward search is performed. 
After the threads end, the pointers need to be shifted in the similar 
way as in the one-thread version of bidirectional search.

3.2.3 Multithread Dijkstra’s implementation

Many threads are called using a reference to an object of 
class Parallel_Info containing: a data container (priority queue), 
an array of vertices’ ids, and array of edges’ ids, and an array of 
vertices values. In the multithread approach the graph is divided 
into clusters, taking advantage of the fact, that all the vertices are 
stored in a two-dimensional array. The division of the graph is 
performed as follows:

Each cluster is then defined by its maximal row and column 
indices max_x and max_y. The segment size can be calculated as:

and the indices inside a cluster used by a thread ID as:

If a graph cannot be divided into equal parts, the remaining 
rows and columns are added to the nearest cluster. Each thread has 
its separate priority queue storing the vertices from one cluster. 
During the execution, each thread is responsible for finding the 
smallest element in its region. To synchronize the threads, barriers 
from the Boost library are applied. The barriers are implemented 
in the constructor of BarrierGuard structure. The synchronization 
is performed four times in the code. The first time is needed 
after the minima in each subgraph are found. Based on the local 
minima, the globally smallest node is determined. After the node 
with the smallest value is found, the second barrier is called, and 
the vertices connected to this node are considered. When the 
vertices have been stored, the third synchronization follows. The 
last stage in the function is recalculating the values in the vertices 
from the previous step. Each thread recalculates one vertex. If 
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there are more threads than vertices to process, some of them can 
be inactive. Then the last synchronization is called.

4. Experimental results

To compare all the considered approaches, many experiments 
were performed. We tested basic Dijkstra’s algorithm, its 
bidirectional version, bidirectional method using two threads, 
multi-thread implementation with 4 threads for forward 
and 4 for backward search, and one-directional multi-thread 
implementation with 4 threads. The analyzed performances were 
obtained on the Intel® i7 CPU @ 3.20GHz (4 physical cores). 
Presented results are averaged over 15 runs of each algorithm.

4.1. Artificial data

Table 1 contains processing times of four methods for the data 
generated as square grids with random edges. For each grid size 
several levels of density, defined as the ratio of edges to nodes, 
were generated. This preliminary study performed for basic 
variations of the considered algorithms can be used as referential 
to the real-world data presented in the following section. As one 
may notice looking at the Table 1, the basic version of Dijkstra 
method is always outperformed by the bidirectional approach. 
Multi-threaded algorithm reveals its superiority over the original 
one, for graphs of higher density. The best performances were 
obtained for bidirectional version implemented on two threads.

Table 1. Processing times for the artificially generated data 

(averaged over 15 runs of the algorithms)

Grid 

size

Edges/

Nodes
Dijkstra

Bidirectional, 

one thread

Bidirectional, 

two threads
Multithread

50
x5

0

3 0.091 0.089 0.067 0.183

4 0.129 0.077 0.065 0.194

6 0.119 0.120 0.080 0.176

8 0.255 0.111 0.094 0.168

10
0x

10
0

3 0.489 0.263 0.190 0.548

4 0.482 0.255 0.157 0.614

6 0.711 0.350 0.266 0.591

8 0.882 0.347 0.319 0.744

25
0x

25
0

3 2.142 1.116 0.815 2.239

4 1.562 1.116 0.888 2.253

6 3.709 1.773 1.384 2.637

8 2.378 2.410 1.543 2.247

50
0x

50
0

3 4.403 2.169 1.073 6.666

4 4.592 2.423 1.511 5.566

6 9.723 4.796 2.475 8.791

8 10.500 6.101 4.021 8.682

10
00

x1
00

0

3 10.964 5.720 4.185 10.451

4 17.258 9.348 5.451 16.554

6 27.327 14.056 10.401 22.461

8 45.239 25.631 15.485 37.152

In the Table 2 results of comparing the algorithms using 
different data structures were presented. The artificial data were 
generated as square grids with each node connected only to its 
four nearest neighbours (or less, in the case of grid borders). For 
such graphs, implementing the algorithms with Fibonacci heaps 
clearly improved their processing times. 

Table 2. Processing times for the artificially generated data (square 

grids, averaged over 15 runs of the algorithms)

Grid 
size

Dijkstra
Bidirectional 

Dijkstra 

Bidirectional 
Dijkstra (two 

threads)

Dijkstra 
with 

Fibonacci 
heap

Bidirectional 
Dijkstra with 

Fibonacci 
heap

Bidirectional 

Dijkstra with 

Fibonacci 

heap (two 

threads)

50
x5

0

0.217 0.054 0.038 0.032 0.024 0.028

10
0x

10
0

1.509 0.192 0.119 0.123 0.094 0.106

25
0x

25
0

3.168 1.033 0.655 0.437 0.378 0.791
50

0x
50

0

18.343 3.739 2.482 1.402 1.203 1.166

10
00

x1
00

0

44.674 18.636 12.130 5.422 5.008 4.443

4.2. Real-world dataset

The real-world data were obtained from urban network of the 
city of Wrocław, Poland. Based on this urban road network, using 
OpenStreetMap® [9] we generated two graphs: one without taking 
into account the street directions, and another with the street 
directions included in the graph description. On such graphs 
we tested the algorithms on two tasks. The first one was to find 
the route between the node 0 and the node with the highest ID 
(Task 1), the second one was to find the quickest route between 
randomly chose nodes (Task 2).

Analysing figures 1 and 2, one may observe how the considered 
variants of the algorithm performed for the real-world data. It is 
clearly evident, that the best performances can be observed for 
bidirectional implementations. What may be surprising is that 
more sophisticated versions using Fibonacci heaps and multi-
thread approach seem to be much slower. Only the one-directional 
version of the multi-thread implementation with Fibonacci 
heap achieved similar processing time as basic Dijkstra method. 
Moreover, using theoretically better data structure (a heap instead 
of regular priority queue), always slowed down the calculations. 
These results appear to contradict the conclusions that might 
have been formulated based on the analysis of processing times 
for the artificial datasets (Tables 1 and 2). The explanation of this 
phenomenon is that the real-world road network’s structure is 
different than those traditionally used as testing benchmarks for 
shortest paths algorithms.
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Fig. 1. Processing times of the algorithms tested on the real-world 

graph without street directions (averaged over 15 runs of the 

algorithms) [own study]

Fig. 2. Processing times of the algorithms tested on the real-world 

graph with street directions (averaged over 15 runs of the 

algorithms) [own study]

5. Conclusion 

In this paper, we presented possible ways of speeding 
up traditional Dijkstra’s algorithm by parallel multi-thread 
implementation and using more effi  cient data structures. Th e 
experimental study revealed that some modifications, save 
reasonable from theoretical point of view, are rather impractical 
when applied to the real road network data. Presented simulation 
results indicate, that the simplest and simultaneously most 
eff ective way to improve the considered method is to implement 
its bidirectional version on two threads. However, there may exist 
another solution that the authors plan to exploit in future. Our 
eff orts may be directed towards formulating parallel multi-thread 
algorithm that makes use of the information about characteristic 
of real urban networks.
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