
M. BAZAN, P. CISKOWSKI, R. DUDEK, K. HALAWA, T. JANICZEK, P. KOZACZEWSKI, A. RUSIECKI

3

TelematicsTelematics
Transport SystemTransport System

Archives of Volume 9

Issue 2

May 2016

Multithreaded enhancements of
the Dijkstra algorithm for route
optimization in urban networks

M. BAZANa, P. CISKOWSKIa, R. DUDEKa, K. HALAWAa, T. JANICZEKb, P. KOZACZEWSKIa, A. RUSIECKIa
a WROCŁAW UNIVERSITY OF TECHNOLOGY, Faculty of Electronics, Department of Computer Engineering,
Janiszewskiego 11/17, 50-372 Wrocław, Poland
b WROCŁAW UNIVERSITY OF TECHNOLOGY, Faculty of Electronics, Department of Control Systems and
Mechatronics, ul. Janiczewskiego 11/17, 50-372 Wrocław, Poland
EMAIL: bazan@pwr.edu.pl

ABSTRACT
In this paper, we present a case study, showing step by step, how to speed up Dijkstra’s method by parallelizing
its computation and using different data structures. We compare basic algorithm with its bidirectional version
and investigate two- and-multi-thread implementations based on Fibonacci heaps and regular priority queues.
Experimental results obtained for artificially generated graphs as well as real-world road network data are presented
and described.

KEYWORDS: Dijkstra algorithm for shortest paths, fastest routes in urban networks, route optimization

1. Introduction

Shortest path algorithms, though potentially applied to
any static networks, are very often used in IP network routing
protocols, route planning in road networks, and even Intelligent
Transportation Systems [4]. In fact, such methods can be
considered as the very basis of the graph theory with many
practical applications [3]. In this article we focus on one of these
methods, namely Dijkstra’s algorithm, used to find the quickest
connection in transportation network modelled as a graph with
travel times on its edges, or shortest route in a road network.

Classical Dijkstra’s algorithm is the most popular and
simultaneously the most efficient sequential method on digraphs
with nonnegative weights [2]. It is easy to notice, that a typical
road network can be represented by a graph with vertices at the
crossings and edges modelling streets. Each edge has its weight
cost. Moving from one vertex to another is possible only if they are
connected with an edge. Finding the path between two vertices is
then finding all the edges connecting the source and destination
vertex. The length of the path is defined as the sum of all weights

on the route. Hence, the Dijkstra’s algorithm can be easily applied
to solve such problems.

The paper is organized as follows: we start with presenting
a short description of the basic Dijkstra’s algorithm and its
modification. In particular, the ideas behind effective speeding
up the algorithm are explained. Then, a description of the
implementation of considered methods with the use of LEDA [8]
and Boost [7] libraries is given. The following section describes the
experiments performed for the implemented algorithm variants
and makes an attempt to explain the results. In the last section we
summarize and conclude the article.

2. Dijkstra’s algorithm

In the Dijkstra’s algorithm the vertices of the graph are
organized into a priority queue [2, 4, 6]. At the beginning of the
algorithm the distances for all vertices, save the source one, are set
to infinity. The source node distance is zero.

In typical implementation each vertex is assigned a status: not_
visited (the node hasn’t been taken into account during the run of

MULTITHREADED ENHANCEMENTS OF THE DIJKSTRA ALGORITHM FOR ROUTE OPTIMIZATION IN URBAN NETWORKS

© Copyright by PSTT , All rights reserved. 20164

the algorithm), labeled (the distance from the source to the labeled
vertex has been already calculated), or visited (the node has been
chosen as one of the vertices nearest to the source one). The tentative
distances for each vertex are also maintained by the algorithm.

2.1. Basic Version

In each run of the loop, a vertex with the smallest distance
is considered. Then all the nodes connected to this vertex are
checked, whether their costs are larger than the summed distances.
If their tentative distances are modified, the priority queue has to
be reorganized.

The distance (or time) from the node i to the node j is denoted
as w(i,j), while the distance between the source vertex and the
given node v is denoted as d(v). The whole procedure of the
Dijkstra’s algorithm is then as follows [5]:

1. Start with initializing d(v) for each v as “infinity” (maximum
of double type). For the source node we set d(start) = 0.

2. Create a priority queue containing all the vertices, where the
priority is given as d(v).

3. Pick a vertex u with the smallest d(v).
4. All outgoing edges of u are relaxed and the times d(u) + w(u,v)

are compared with d(v). If the value in the vertex v is larger,
then d(v) is set to w(u,v) + d(u). To help in calculating the
shortest path, the predecessor u and the edge (u,v) are mainta-
ined in v. The vertex u is removed.

5. If the queue is not empty, go to step 3, otherwise go to step 6.
6. Calculate the shortest path from the destination to the source

vertex, using pointers to the preceding nodes.

2.2. Bidirectional Dijkstra (one thread)

In this case we consider two separate priority queues [4]. Basic
Dijkstra’s method is executed simultaneously from the source
and from the target vertex. If some node is reached from both
directions, the algorithm stops.

The first queue is used in the forward search from the source
node and the second one in the backward search starting from the
destination node. The algorithm picks and processes a vertex from
the first priority queue, then picks and processes the vertex from
the second queue. In such approach the objects of the type Node
should also store the information about the search direction. The
solution can be found, when one search picks a vertex that already
has been processed by another direction.

2.3. Bidirectional Dijkstra (two-threaded)

Bidirectional search is implemented with two threads using
separate priority queues. Each thread performs a search in one
direction, so there is no need of mutex-based synchronization.
Both threads work in parallel, so if one search picks a vertex already
processed by another one, bool type variable is set to true. The variable
is accessible by two threads, so once it is set, both searches stop.

2.4. Multithreaded Dijkstra

In the multithreaded approach the basic graph is divided into a
set of subgraphs [2, 5]. For each subgraph, a separate thread, with
its own priority queue, is called. Finding the smallest element in the
whole graph is implemented by finding the smallest elements in
each subgraph and comparing them. Then, the thread responsible
for the chosen node, processes the vertices connected to it. All the
calculations for given vertices are divided between threads.

The running time of the Dijkstra’s algorithm without using
self-organizing data containers is O(V2) [2, 4], because searching
for the smallest element takes O(V), as well as recalculating
the vertices. If the algorithm is parallelized, the running time
depends on the number P of subgraphs. Then, finding the smallest
element takes O(log(P)), and updating the values at vertices takes
O(V/P). For the procedure performed V times we obtain finally
O(V2/P + V log(P)).

3. Implementation

The algorithms were implemented in C++ under MS Visual
Studio 2012 with the use of LEDA [8] and Boost [7] libraries.

Searching for the shortest path is performed in a graph described
by objects from LEDA library. We defined additional classes Node
and Edge, based on the node and edge classes (elements of the graph
class) of LEDA, to model the graphs being analyzed. Class Node
consists of an object of the node class of LEDA library and additional
elements used to implement Dijkstra’s algorithm: node ID, latitude,
longitude, node status in the Dijkstra’s algorithm (possible values
not_visited, labeled, visited), time of reaching a given node on the
path. Additional elements used to extract the shortest path after the
algorithm finished are the node predecessor on the path and the
edge between the preceding and current node. In the bidirectional
Dijkstra’s search additional variable describing the search direction
is used.

The Edge class consists of an object of the edge class from
LEDA and additional elements used in the Dijkstra’s method: ID
of the node the edge points from, ID of the node the edge points
to, maximal speed on the edge and the length of the edge.

Two arrays are used to store elements of Node and Edge types. In
the class Network the basic graph and all the methods of calculating
the shortest path in the graph are included. In particular, the class
consists of the graph sizes, and dynamic arrays of pointers to vertices
and edges.

3.1. Fibonacci heap

In the Dijkstra’s algorithm, Fibonacci heaps can be used
instead of regular priority queues. In such a case, the running time
of the method with Fibonacci heaps is O(nlogn + m), where n is
the number of nodes, and m is the number of edges in the whole
graph [1,2]. Fibonacci Heap data container was implemented with
the use of boost library.

In the Fibonacci heap all the elements are sorted in a selected
order, after a new element is inserted into the container. When the

M. BAZAN, P. CISKOWSKI, R. DUDEK, K. HALAWA, T. JANICZEK, P. KOZACZEWSKI, A. RUSIECKI

5

elements are simple numbers, the only thing to be done is defining
a heap as:
However, when one needs to store some more sophisticated
objects, the elements of the class which are to be sorted, have to be
specified. This is why a special structure

 had to be created. Additional method takes two class elements
as input arguments, and returns bool type value. In this case, the
elements are sorted according to the
time of the path from the starting to the current vertex. If two
elements of the heap have the same values, their ID numbers are
compared. A structure with the given method has to be introduced
as one of the Fibonacci heap parameters.

In the Boost library one may found many utilities to use the
heap. Function push(…) after adding an element returns its
handler. To enable a free access to such a type, a handler being an
element of a heap needs to be defined.

Each element of the class Node needs a handler to itself from
the Fibonacci heap. The handler type should be declared earlier
but during such declaration one needs a call to the elements of
a Fibonacci heap (objects of Node class), as parameters. To avoid
such mutual calls and declarations a new class

 was implemented.
The problem was then solved as follows: at the beginning,

the Node class with a pointer to the new class was declared.
Then Komparator structure, handler type fib_handle, and finally
Fibonacci_Heap_Handler class were declared.

3.2. Search method implementation

Searching for the shortest path in a graph is implemented in the
methods of the Network class. Each function takes as its parameters
IDs of the source and destination nodes. Basic implementation
of the Dijkstra’s algorithm uses set container from standard std
library as a priority queue. The first step is initialization of nodes
and corresponding weights (travel times) with the starting node
initialized to 0. Then all the vertices are formed in a priority queue
and the main body of the algorithm starts, taking the vertices
one by one from the queue, until it is empty. The elements in the
queue are sorted by the m_dCurrentTravelTime, so the nodes that
haven’t been considered, with the value set to double limit, are at
the end of the queue. Then we need to find the nodes connected to
the element currently considered. In the next step the chosen node
is checked and if the value in this vertex is larger than the summed
path length, it is replaced by the smaller value. After the value is
changed, the pointer to the preceding vertex and the pointer to the
edge leading to the considered node, are also stored. At last, the
chosen node is removed from the top of the queue. The method
finishes when the source vertex is chosen from the data container.

3.2.1 Bidirectional Dijkstra’s algorithm, one
thread

In this method two search directions are implemented:
from the source to destination node and backwards, from the
destination to the source vertex. After the initialization similar to
the one of basic Dijkstra, two priority queues are created. Both

queues contain all the vertices, however, one queue sorts its
elements by m_dCurrentTravelTime while another is sorted by m_
dCurrentTravelTime_backward. The rest of the code is very similar
to the basic Dijkstra’s implementation, but the method ends when
it finds connection between forward and backward search. If a
node has been already considered by the opposite direction, it
stays unchanged. This method needs also additional phase, because
during the backward search, pointers to the following, not preceding,
vertices and edges are stored. Starting from the connection of both
directions, the vertices are shifted to the source node.

3.2.2 Bidirectional Dijkstra’s algorithm with
two threads

In this method two threads, working in parallel, are applied. The
threads are called with the use of Boost library. In one thread the
forward search, and in another the backward search is performed.
After the threads end, the pointers need to be shifted in the similar
way as in the one-thread version of bidirectional search.

3.2.3 Multithread Dijkstra’s implementation

Many threads are called using a reference to an object of
class Parallel_Info containing: a data container (priority queue),
an array of vertices’ ids, and array of edges’ ids, and an array of
vertices values. In the multithread approach the graph is divided
into clusters, taking advantage of the fact, that all the vertices are
stored in a two-dimensional array. The division of the graph is
performed as follows:

Each cluster is then defined by its maximal row and column
indices max_x and max_y. The segment size can be calculated as:

and the indices inside a cluster used by a thread ID as:

If a graph cannot be divided into equal parts, the remaining
rows and columns are added to the nearest cluster. Each thread has
its separate priority queue storing the vertices from one cluster.
During the execution, each thread is responsible for finding the
smallest element in its region. To synchronize the threads, barriers
from the Boost library are applied. The barriers are implemented
in the constructor of BarrierGuard structure. The synchronization
is performed four times in the code. The first time is needed
after the minima in each subgraph are found. Based on the local
minima, the globally smallest node is determined. After the node
with the smallest value is found, the second barrier is called, and
the vertices connected to this node are considered. When the
vertices have been stored, the third synchronization follows. The
last stage in the function is recalculating the values in the vertices
from the previous step. Each thread recalculates one vertex. If

MULTITHREADED ENHANCEMENTS OF THE DIJKSTRA ALGORITHM FOR ROUTE OPTIMIZATION IN URBAN NETWORKS

© Copyright by PSTT , All rights reserved. 20166

there are more threads than vertices to process, some of them can
be inactive. Then the last synchronization is called.

4. Experimental results

To compare all the considered approaches, many experiments
were performed. We tested basic Dijkstra’s algorithm, its
bidirectional version, bidirectional method using two threads,
multi-thread implementation with 4 threads for forward
and 4 for backward search, and one-directional multi-thread
implementation with 4 threads. The analyzed performances were
obtained on the Intel® i7 CPU @ 3.20GHz (4 physical cores).
Presented results are averaged over 15 runs of each algorithm.

4.1. Artificial data

Table 1 contains processing times of four methods for the data
generated as square grids with random edges. For each grid size
several levels of density, defined as the ratio of edges to nodes,
were generated. This preliminary study performed for basic
variations of the considered algorithms can be used as referential
to the real-world data presented in the following section. As one
may notice looking at the Table 1, the basic version of Dijkstra
method is always outperformed by the bidirectional approach.
Multi-threaded algorithm reveals its superiority over the original
one, for graphs of higher density. The best performances were
obtained for bidirectional version implemented on two threads.

Table 1. Processing times for the artificially generated data

(averaged over 15 runs of the algorithms)

Grid

size

Edges/

Nodes
Dijkstra

Bidirectional,

one thread

Bidirectional,

two threads
Multithread

50
x5

0

3 0.091 0.089 0.067 0.183

4 0.129 0.077 0.065 0.194

6 0.119 0.120 0.080 0.176

8 0.255 0.111 0.094 0.168

10
0x

10
0

3 0.489 0.263 0.190 0.548

4 0.482 0.255 0.157 0.614

6 0.711 0.350 0.266 0.591

8 0.882 0.347 0.319 0.744

25
0x

25
0

3 2.142 1.116 0.815 2.239

4 1.562 1.116 0.888 2.253

6 3.709 1.773 1.384 2.637

8 2.378 2.410 1.543 2.247

50
0x

50
0

3 4.403 2.169 1.073 6.666

4 4.592 2.423 1.511 5.566

6 9.723 4.796 2.475 8.791

8 10.500 6.101 4.021 8.682

10
00

x1
00

0

3 10.964 5.720 4.185 10.451

4 17.258 9.348 5.451 16.554

6 27.327 14.056 10.401 22.461

8 45.239 25.631 15.485 37.152

In the Table 2 results of comparing the algorithms using
different data structures were presented. The artificial data were
generated as square grids with each node connected only to its
four nearest neighbours (or less, in the case of grid borders). For
such graphs, implementing the algorithms with Fibonacci heaps
clearly improved their processing times.

Table 2. Processing times for the artificially generated data (square

grids, averaged over 15 runs of the algorithms)

Grid
size

Dijkstra
Bidirectional

Dijkstra

Bidirectional
Dijkstra (two

threads)

Dijkstra
with

Fibonacci
heap

Bidirectional
Dijkstra with

Fibonacci
heap

Bidirectional

Dijkstra with

Fibonacci

heap (two

threads)

50
x5

0

0.217 0.054 0.038 0.032 0.024 0.028

10
0x

10
0

1.509 0.192 0.119 0.123 0.094 0.106

25
0x

25
0

3.168 1.033 0.655 0.437 0.378 0.791
50

0x
50

0

18.343 3.739 2.482 1.402 1.203 1.166

10
00

x1
00

0

44.674 18.636 12.130 5.422 5.008 4.443

4.2. Real-world dataset

The real-world data were obtained from urban network of the
city of Wrocław, Poland. Based on this urban road network, using
OpenStreetMap® [9] we generated two graphs: one without taking
into account the street directions, and another with the street
directions included in the graph description. On such graphs
we tested the algorithms on two tasks. The first one was to find
the route between the node 0 and the node with the highest ID
(Task 1), the second one was to find the quickest route between
randomly chose nodes (Task 2).

Analysing figures 1 and 2, one may observe how the considered
variants of the algorithm performed for the real-world data. It is
clearly evident, that the best performances can be observed for
bidirectional implementations. What may be surprising is that
more sophisticated versions using Fibonacci heaps and multi-
thread approach seem to be much slower. Only the one-directional
version of the multi-thread implementation with Fibonacci
heap achieved similar processing time as basic Dijkstra method.
Moreover, using theoretically better data structure (a heap instead
of regular priority queue), always slowed down the calculations.
These results appear to contradict the conclusions that might
have been formulated based on the analysis of processing times
for the artificial datasets (Tables 1 and 2). The explanation of this
phenomenon is that the real-world road network’s structure is
different than those traditionally used as testing benchmarks for
shortest paths algorithms.

M. BAZAN, P. CISKOWSKI, R. DUDEK, K. HALAWA, T. JANICZEK, P. KOZACZEWSKI, A. RUSIECKI

7

Fig. 1. Processing times of the algorithms tested on the real-world

graph without street directions (averaged over 15 runs of the

algorithms) [own study]

Fig. 2. Processing times of the algorithms tested on the real-world

graph with street directions (averaged over 15 runs of the

algorithms) [own study]

5. Conclusion

In this paper, we presented possible ways of speeding
up traditional Dijkstra’s algorithm by parallel multi-thread
implementation and using more effi cient data structures. Th e
experimental study revealed that some modifications, save
reasonable from theoretical point of view, are rather impractical
when applied to the real road network data. Presented simulation
results indicate, that the simplest and simultaneously most
eff ective way to improve the considered method is to implement
its bidirectional version on two threads. However, there may exist
another solution that the authors plan to exploit in future. Our
eff orts may be directed towards formulating parallel multi-thread
algorithm that makes use of the information about characteristic
of real urban networks.

Acknowledgements

Th e authors would like to acknowledge a partial support of the
WUT grant no. S50242.

Bibliography

[1] BAST, H., et al.: Route Planning in Transportation Networks,
Technical Report of Microsoft Research, January 2014.

[2] CRAUSER, A., et al.: A Parallelization of Dijkstra’s Shortest
Path Algorithm, in MFCS’98, LNCS 1450, pp. 722-731,
Springer-Verlag 1998.

[3] DELLING, D., WAGNER, D.: Time-dependent route
planning, in Robust and Online Large-Scale Optimization,
LNCS 5868, pp. 207–230, Springer 2009.

[4] DELLING D., et al.: Engineering Route Planning Algorithms
in: Algorithmics, LNCS 5515, pp. 117–139, Springer-Verlag
2009.

[5] DUDEK, R.: Analysis and evaluation of a set of shortest
paths of passing on traffi c control system, Th esis, Wroclaw
University of Technology 2014.

[6] JASIKA, N., et al.: Dijkstra’s shortest path algorithm serial
and parallel execution performance analysis, MIPRO 2012,
May 21-25, Croatia 2012.

[7] KARLSSON, B.: Beyond the C++ Standard Library: An
Introduction to Boost, Addison-Wesley 2006.

[8] LEDA Homepage: http://www.algorithmic-solutions.com/
leda/index.htm, [date of access: 05.01.2016].

[9] OpenStreetMap Homepage: https://www.openstreetmap.org,
[date of access: 05.01.2016].

