Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study is a detailed lithofacies analysis of the Wiar and Leszczyny members of the deep-marine Ropianka Formation (Campanian–Paleocene) exposed in the Hucisko Jawornickie section of the Skole Nappe, Polish Carpathian Flysch. The sedimentary succession (>400 m thick) represents a channelized lobe complex that prograded at the base of submarine slope. Seven sedimentary facies are recognized as a record of the principal modes of sediment deposition. Based on their stratigraphic grouping and grain-size trends, six facies associations are distinguished as representing specific sub-environments of the depositional system: distributary channels, channel-mouth lobes, channel levees, crevasses and interlobe basin plain with crevasse splays. The individual facies associations are characterized statistically and their internal facies organization is analysed by the method of embedded Markov chains to reveal the time pattern of depositional processes. The environmental changes indicated by the vertical succession of facies associations are attributed to the autogenic processes of the distributary channel shifting within an aggrading lobe area and the lateral switching of depositional lobes. Eustatic influences are likely, but difficult to ascertain with poor biostratigraphic data. The bulk basinward advance of the base-of-slope system was probably due to a pulse of the tectonic narrowing of the synclinal Skole Basin.
Czasopismo
Rocznik
Tom
Strony
111--141
Opis fizyczny
Bibliogr. 140 poz., rys., tab.
Twórcy
autor
- Jagiellonian University, Institute of Geological Sciences, ul. Gronostajowa 3a, PL-30-387 Kraków, Poland.
Bibliografia
- 1. Alexander, J. and Morris, S. 1994. Observations on experimental, nonchannelized high-concentration turbidity currents and variations in deposits around obstacles. Journal of Sedimentary Research, 64, 899-909.
- 2. Alexander, J. and Mulder, T. 2002. Experimental quasi-steady density currents. Marine Geology, 186, 195-210.
- 3. Ashley, G.M., Southard, J.B. and Boothroyd, J.C. 1982. Deposition of climbing-ripple beds: a flume simulation. Sedimentology, 29, 67-79.
- 4. Baas, J.H. 2004. Conditions for formation of massive turbiditic sandstones by primary depositional processes. Sedimentary Geology, 166, 293-310.
- 5. Baas, J.H., Best, J.L., Peakall, J. and Wang, M. 2009. A phase diagram for turbulent, transitional, and laminar clay suspension flows. Journal of Sedimentary Research, 79, 162-183.
- 6. Barwicz-Piskorz, W. and Rajchel, J. 2012. Radiolarian and agglutinated foraminiferal biostratigraphy of the Paleogene deep-water deposits on the northern margin of the Carpathian Tethys (Skole Unit). Geological Quarterly, 56, 1-24.
- 7. Bayliss, N.J. and Pickering, K.T. 2015a. Transition from deep-marine lower-slope erosional channels to proximal basin-floor stacked channel-levée-overbank deposits, and syn-sedimentary growth structures, Middle Eocene Banastón System, Ainsa Basin, Spanish Pyrenees. Earth-Science Review, 144, 23-46.
- 8. Bayliss, N.J. and Pickering, K.T. 2015b. Deep-marine structurally confined channelised sandy fans: Middle Eocene Morillo System, Ainsa Basin, Spanish Pyrenees. Earth-Science Review, 144, 82-106.
- 9. Bąk, K., 2007. Environmental changes around the Cenomanian-Turonian boundary in a marginal part of the Outer Carpathian Basin expressed by microfacies, microfossils and chemical records in the Skole Nappe (Poland). Annales Societatis Geologorum Poloniae, 77, 39-67.
- 10. Bąk, K., Bąk, M., Górny, Z. and Wolska, A. 2014. Environmental conditions in a Carpathian deep-sea basin during the period preceding Oceanic Anoxic Event 2 - a case study from the Skole Nappe. Geologica Carpathica, 65, 433-450.
- 11. Bernhardt, A., Jobe, Z.R. and Lowe, D.R. 2011. Stratigraphic evolution of a submarine channel-lobe complex system in a narrow fairway within the Magallanes foreland basin, Cerro Toro Formation, southern Chile. Marine and Petroleum Geology, 28, 785-806.
- 12. Best, J. and Bridge, J. 1992. The morphology and dynamics of low amplitude bedwaves upon upper stage plane beds and the preservation of planar laminae. Sedimentology, 39, 737-752.
- 13. Breien, H., De Blasio, F.V., Elverhøi, A., Nystruen, J.P. and Harbitz, C.B. 2010. Transport mechanisms of sand in deep-marine environments - insights based on laboratory experiments. Journal of Sedimentary Research, 80, 975-990.
- 14. Bromowicz, J. 1974. Facial variability and lithological character of Inoceramian Beds of the Skole-Nappe between Rzeszów and Przemyśl. Prace Geologiczne, 84, 1-83. [In Polish with English summary]
- 15. Bouma, A.H. 1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation, 168 pp. Elsevier; Amsterdam.
- 16. Bouma, A.H. 2000. Coarse-grained and fine-grained turbidite systems as end member models: applicability and dangers. Marine and Petroleum Geology, 17, 137-143.
- 17. Bruhn, C.H.L. and Walker, R.G. 1997. Internal architecture and sedimentary evolution of coarse-grained, turbidite channellevee complexes, Early Eocene Regência Canyon, Espírito Santo Basin, Brazil. Sedimentology, 44, 17-46.
- 18. Brunt, R.L., Hodgson, D.M., Flint, S.S., Pringle, J.K., Di Celma, C., Prélat, A. and Grecula, M. 2013. Confined to unconfined: anatomy of a base of slope succession, Karoo Basin, South Africa. Marine and Petroleum Geology, 41, 206-221.
- 19. Burzewski, J. 1966. Baculites marls on the lithostratigraphy background of the upper Inoceramian Beds of the Skiba Carpathians. Zeszyty Naukowe AGH, Geologia, 7, 89-115. [In Polish with French summary]
- 20. Cantelli, A., Pirmez, C., Johnson, S. and Parker, G. 2011. Morphodynamic and stratigraphic evolution of self-channelized subaqueous fans emplaced by turbidity currents. Journal of Sedimentary Research, 81, 233-247.
- 21. Carter, R.M. 1988. The nature and evolution of deep-sea channel systems. Basin Research, 1, 41-54.
- 22. Catuneanu, O. 2006. Principles of Sequence Stratigraphy, 375 p. Elsevier, Amsterdam.
- 23. Clark, J.D. and Gardiner, A.R. 2000. Outcrop analogues for deep-water channel and levee genetic units from the Grès d’Annot turbidite system, SE France. In: Weimer, P., Slatt, R.M., Coleman, J.L., Rosen, N., Nelson, C.H., Bouma, A.H., Styzen, M. and Lawrence, D.T. (Eds), Global Deep-Water Reservoirs. Gulf Coast Section SEPM Foundation 20th Annual Bob F Perkins Research Conference, pp. 175-190. Houston.
- 24. Clark, J.D. and Pickering, K.T. 1996. Architectural elements and growth patterns of submarine channels: application to hydrocarbon exploration. American Association of Petroleum Geologists Bulletin, 80, 194-220.
- 25. Collinson, J.D., Mountney, N.P. and Thompson, D.B. 2006. Sedimentary Structures, 292 p. Terra Publishing; Harpenden.
- 26. Crowell, J.C. 1957. Origin of pebbly mudstones. Geological Society of America Bulletin, 68, 993-1010.
- 27. Davis, J.C. 2002. Statistics and Data Analysis in Geology, 638 p. John Wiley & Sons; New York. [3rd ed.]
- 28. Deptuck, M.E., Piper, D.J.W., Savoye, B. and Gervais, A. 2008. Dimensions and architecture of Late Pleistocene submarine lobes off the northern margin of East Corsica. Sedimentology, 55, 869-898.
- 29. Deptuck, M.E., Sylvester, Z., Pirmez, C. and O’Byrne, C. 2007. Migration-aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Beninmajor Canyon, western Niger Delta slope. Marine and Petroleum Geology, 24, 406-433.
- 30. Dott, R.H., Jr. 1983. Presidential address: Episodic sedimentation - How normal is average? How rare is rare? Does it matter? Journal of Sedimentary Petrology, 53, 5-23.
- 31. Drake, T.G. 1990. Structural features in granular flows. Journal of Geophysical Research, B95, 8681-8696.
- 32. Dykstra, M. 2012. Deep-water tidal sedimentology. In: Davis, R.A. and Dalrymple, R.W. (Eds), Principles of Tidal Sedimentology, pp. 371-396. Springer; Berlin.
- 33. Dżułyński, S. and Smith, A.J. 1964. Flysch facies. Rocznik Polskiego Towarzystwa Geologicznego, 34, 245-266.
- 34. Ferry, J.N., Mulder, T., Parize, O. and Raillard, S. 2005. Concept of equilibrium profile in deep water turbidite system: effects of local physiographic changes on the nature of sedi mentary process and the geometries of deposits. In: Hodgson, D.M., and Flint, S.S. (Eds), Submarine Slope Systems: Processes and Products. Geological Society of London Special Publication, 244, 181-193.
- 35. Galloway, W.E. 1998. Siliciclastic slope and base-of-slope depositional systems: component facies, stratigraphic architecture, and classification. American Association of Petroleum Geologists Bulletin, 82, 569-595.
- 36. Gardner, M.H., Borer, J.M., Melick, J.J., Mavilla, N., Dechesne, M. and Wagerle, R.N. 2003. Stratigraphic process-response model for submarine channels and related features from studies of Permian Brushy Canyon outcrops, West Texas. Marine and Petroleum Geology, 20, 757-787.
- 37. Gągała, Ł., Vergés, J., Saura, E., Malata, T., Ringenbach, J., Werner, P. and Krzywiec, P. 2012. Architecture and orogenic evolution of the northeastern Outer Carpathians from cross-section balancing and forward modelling. Tectonophysics, 532-535, 223-241.
- 38. Ge, Z., Nemec, W., Gawthorpe, R.L. and Hansen, E.W.M. 2017. Response of unconfined turbidity current to normal-fault topography. Sedimentology, 64, 932-959.
- 39. Gedl, E. 1999. Lower Cretaceous palynomorphs from the Skole Nappe (Outer Carpathians, Poland). Geologica Carpathica, 50, 75-90.
- 40. Gee, M.J.R., Masson, D.G., Watts, A.B. and Allen, P.A. 1999. 138 PIOTR ŁAPCIK The Saharan debris flow: an insight into the mechanics of long runout submarine debris flows. Sedimentology, 46, 317-335.
- 41. Geroch, S., Krysowska-Iwaszkiewicz, M., Michalik, M., Prochazka, K., Radomski, A., Radwański, Z., Unrug, Z., Unrug, R. and Wieczorek, J. 1979. Sedimentation of Węgierka Marls (Late Senonian, Polish Flysch Carpathians). Annales Societatis Geologorum Poloniae, 49, 105-134. [In Polish with English summary]
- 42. Gradstein, F., Ogg, J., Schmitz, M. and Ogg, G. 2012. The Geological Time Scale 2012, 1176 p. Elsevier; Oxford.
- 43. Grundvåg, S.A., Johannessen, E.P., Hansen, W.H. and Plink-Björklund, P. 2014. Depositional architecture and evolution of progradationally stacked lobe complexes in the Eocene Central Basin of Spitsbergen. Sedimentology, 61, 535-569.
- 44. Gucik, S. 1963. Profile of the Lower Cretaceous from Bełwin in the Przemyśl Carpathians. Kwartalnik Geologiczny, 7, 257-268. [In Polish with English summary]
- 45. Gucik, S., Paul, Z., Ślączka, A. and Żytko, K. 1980. Mapa geologiczna Polski 1:200 000, arkusz Przemyśl, Kalników. Wydawnictwa Geologiczne; Warszawa. [In Polish]
- 46. Harms, J.C., Southard, J.B., Spearing, D.R. and Walker, R.G. 1975. Depositional Environments as Interpreted from Primary Sedimentary Structures and Stratification Sequences. Lecture Notes, SEPM Short Course No. 2, 161 p. Society of Economic Paleontologists and Mineralogists; Dallas.
- 47. Haughton, P.D.W., Davis, C., McCaffrey, W. and Barker, S.P. 2009. Hybrid sediment gravity flow deposits - classification, origin and significance. In: Amy, L.A., McCaffrey, W.B. and Talling, P.J. (Eds), Hybrid and Transitional Submarine Flows. Marine and Petroleum Geology, 26, 1900-1918.
- 48. Haq, B.U. 2014. Cretaceous eustasy revisited. Global and Planetary Change, 113, 44-58.
- 49. He, Y., Gao, Z., Luo, J., Luo, S. and Liu, X. 2008. Characteristics of internal-wave and internal-tide deposits and their hydrocarbon potential. Petroleum Science, 5, 37-44.
- 50. Helland-Hansen, W. 2009. Towards the standardization of sequence stratigraphy: Discussion. Earth-Science Review, 94, 95-97.
- 51. Heller, P.L. and Dickinson, W.R. 1985. Submarine ramp facies model for delta-fed, sand-rich turbidite systems. American Association of Petroleum Geologists Bulletin, 69, 960-976.
- 52. Hodgson, D.M., Di Celma, C.N., Brunt, R.L. and Flint, S.S. 2011. Submarine slope degradation and aggradation and the stratigraphic evolution of channel-levee systems. Journal of the Geological Society of London, 168, 625-628.
- 53. Hoffmann, M., Kołodziej, B. and Skupien, P., 2017. Microencruster-microbial framework and synsedimentary cements in the Štramberk Limestone (Carpathians, Czech Republic): Insights into reef zonation. Annales Societatis Geologorum Poloniae, 87, 325-347.
- 54. Howell, D.G. and Normark, W.R. 1982. Sedimentology of submarine fans. In: Scholle, P.A. and Spearing, D.R. (Eds), Sandstone Depositional Environments. American Association of Petroleum Geologists Memoir, 31, 365-404.
- 55. Hubbard, S.M., Romans, B.W. and Graham, S.A. 2008. Deep-water foreland basin deposits of the Cerro Toro Formation, Magallanes basin, Chile: architectural elements of a sinuous basin axial channel belt. Sedimentology, 55, 1333-1359.
- 56. Hubbard, S.M., Covault, J.A., Fildani, A. and Romans, B.R. 2014. Sediment transfer and deposition in slope channels: Deciphering the record of enigmatic deep-sea processes from outcrop. Geological Society of America Bulletin, 126, 857-871.
- 57. Ilstad, T., Marr, J.G., Elverhøi, A. and Harbitz, C.B. 2004. Laboratory studies of subaqueous debris flows by measurements of pore-fluid pressure and total stress. Marine Geology, 213, 403-414.
- 58. Janbu, N.E., Nemec, W., Kırman, E. and Özaksoy, V. 2007. Facies anatomy of a channelized sand-rich turbiditic system: the Eocene Kusuri Formation in the Sinop Basin, north-central Turkey. In: Nichols, G., Paola, C. and Williams, E.A. (Eds), Sedimentary Environments, Processes and Basins - A Tribute to Peter Friend. International Association of Sedimentologists Special Publication, 38, 457-517.
- 59. Janocko, M., Nemec, W., Henriksen, S. and Warchoł, M. 2013. The diversity of deep-water sinuous channel belts and slope valley-fill complexes. Marine and Petroleum Geology, 41, 7-34.
- 60. Jurkiewicz, H. and Woiński, J. 1981. Mapa geologiczna Polski, 1:200 000, arkusz Mielec. Wydawnictwa Geologiczne; Warszawa. [In Polish]
- 61. Kędzierski, M. and Leszczyński, S. 2013. A paleoceanographic model for the Late Campanian-Early Maastrichtian sedimentation in the Polish Carpathian Flysch basin based on nannofossils. Marine Micropaleontology, 102, 34-50.
- 62. Kerr, R.C. 1991. Erosion of a stable density gradient by sedimentation-driven convection. Nature, 353, 423-425.
- 63. Klaucke, I. and Hesse, R. 1996. Fluvial features in the deepsea: new insights from the glacigenic submarine drainage system of the Northwest Atlantic Mid-Ocean Channel in the Labrador Sea. Sedimentary Geology, 106, 223-234.
- 64. Kneller, B.C. and Branney, M.J. 1995. Sustained high-density turbidity currents and the deposition of thick massive sands. Sedimentology, 42, 607-616.
- 65. Kotlarczyk, J. 1978. Stratigraphy of the Ropianka Formation or of Inoceramian beds in the Skole Unit of the Flysch Carpathians. Prace Geologiczne, Polska Akademia Nauk, Oddział w Krakowie, Komisja Nauk Geologicznych, 108, 1-75. [In Polish with English summary]
- 66. Kotlarczyk, J. 1988. A Guidebook of 59th PTG Congress in Przemyśl, 298 p. Wydawnictwa AGH; Kraków. [In Polish]
- 67. Kotlarczyk, J., Jerzmańska, A., Świdnicka, E. and Wiszniowska, T. 2006. A framework of ichtyofaunal ecostratigraphy of the Oligocene-Early Miocene strata of the Polish Outer FACIES ANATOMY OF A PROGRADATIONAL SUBMARINE CHANELIZED LOBE COMPLEX 139 Carpathian Basin. Annales Societatis Geologorum Poloniae, 76, 1-111.
- 68. Kováč, M., Plašienka, D., Soták, J., Vojtko, R., Oszczypko, N., Less, G., Ćosović, V., Fügenschuh, B. and Králiková, S. 2016. Paleogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Global and Planetary Change, 140, 9-27.
- 69. Książkiewicz, M. (ed.) 1962. Geological Atlas of Poland. Fascicle, 13 - Cretaceous and Early Tertiary in the Polish External Carpathians. Instytut Geologiczny; Warszawa. [In Polish with English summary]
- 70. Leclair, S.F. and Arnott, R.W.C. 2005. Parallel lamination formed by high-density turbidity currents. Journal of Sedimentary Research, 75, 1-5.
- 71. Leszczyński, S., Malik, K. and Kędzierski, M. 1995. New data on lithofacies and stratigraphy of the siliceous and fucoid marl of the Skole nappe (Cretaceous, Polish Carpathians). Annales Societatis Geologorum Poloniae, 65, 43-62. [In Polish with English summary]
- 72. Leszczyński, S. and Uchman, A. 1991. To the origin of variegated shales from flysch of the Polish Carpathians. Geologica Carpathica, 42, 279-289.
- 73. Leszczyński, S. 2003. Bioturbation structures in the Holovnia Siliceous Marls (Turonian-Lower Santonian) in Rybotycze (Polish Carpathians). Annales Societatis Geologorum Poloniae, 73, 103-122.
- 74. Leszczyński, S. 2004. Bioturbation structures of the Kropivnik Fucoid Marls (Campanian-lower Maastrichtian) of the Huw niki — Rybotycze area (Polish Carpathians). Geological Quarterly, 48, 35-60.
- 75. Lowe, D.R. 1982. Sediment gravity flows, II. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology, 52, 279-297.
- 76. Lowe, D.R. 1988. Suspended-load fallout rate as an independent variable in the analysis of current structures. Sedimentology, 35, 765-776.
- 77. Lowe, D.R. and Guy, M. 2000. Slurry-flow deposits in the Britannia Formation (Lower Cretaceous), North Sea: a new perspective on the turbidity current and debris flow problem. Sedimentology, 47, 31-70.
- 78. Lowe, D.R., Guy, M. and Palfrey, A. 2003. Facies of slurry-flow deposits, Britannia Formation (Lower Cretaceous), North Sea: implications for flow evolution and deposit geometry. Sedimentology, 50, 45-80.
- 79. Łapcik, P. 2017. Facies heterogeneity of a deep-sea depositional lobe complex: case study from the Słonne section of Skole Nappe, Polish Outer Carpathians. Annales Societatis Geologorum Poloniae, 87, 301-324.
- 80. Łapcik, P. 2018. Sedimentary processes and architecture of Upper Cretaceous deep-sea channel deposits: a case from the Skole Nappe, Polish Outer Carpathians. Geologica Carpathica, 69, 71-88.
- 81. Łapcik, P., Kowal-Kasprzyk, J. and Uchman, A. 2016. Deepsea mass-flow sediments and their exotic blocks from the Ropianka Formation (Campanian-Paleocene) in the Skole Nappe: a case study of the Wola Rafałowska section (SE Poland). Geological Quarterly, 60, 301-316.
- 82. Malata, T. and Poprawa, P. 2006. Evolution of the Skole Subbasin. In: Oszczypko, N., Uchman, A. and Malata, E. (Eds), Rozwój paleotektoniczny basenów Karpat zewnętrznych, pp. 101-110. Institute of Geological Sciences, Jagiellonian University; Kraków. [In Polish with English abstract]
- 83. Marini, M., Salvatore, M., Ravnås, R. and Moscatelli, M. 2015. A comparative study of confined vs. semi-confined turbidite lobes from the Lower Messinian Laga Basin (Central Apennines, Italy): Implications for assessment of reservoir architecture. Marine and Petroleum Geology, 63, 142-165.
- 84. Mayall, M., Jones, E. and Casey, M. 2006. Turbidite channel reservoirs - Key elements in facies prediction and effective development. Marine and Petroleum Geology, 23, 821-841.
- 85. McCave, I.N. and Jones, K.P.N. 1988. Deposition of ungraded muds from high-density non-turbulent turbidity currents. Nature, 133, 250-252.
- 86. McHargue, T., Prycz, M.J., Sullivan, M.D., Clark, J.D., Fildani, A., Romans, B.W., Covault, J.A., Levy, M., Posamentier, H.W. and Drinkwater, N.J. 2011. Architecture of turbidite channel systems on the continental slope: Patterns and predictions. Marine and Petroleum Geology, 28, 728-743.
- 87. Miall, A.D. 1973. Markov chain analysis applied to an ancient alluvial plain succession. Sedimentology, 20, 347-364.
- 88. Miall, A.D. 1978. Lithofacies types and vertical profile models in braided river deposits: a summary. In: Miall, A.D. (Ed.), Fluvial Sedimentology. Canadian Society of Petroleum Geologists Memoir, 5, 597-604.
- 89. Mohrig, D., Ellis, C., Parker, G., Whipple, K. and Hondzo, M. 1998. Hydroplaning of subaqueous debris flows. Geological Society of America Bulletin, 110, 387-394.
- 90. Mulder, T. 2011. Gravity processes and deposits on continental slope, rise and abyssal plains. In: Hüeneke, H. and Mulder, T. (Eds), Deep-Sea Sediments. Developments in Sedimentology, Vol. 63, pp. 25-148. Elsevier; Amsterdam.
- 91. Mulder, T. and Alexander, J. 2001. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology, 48, 269-299.
- 92. Mutti, E. and Normark, W.R. 1987. Comparing examples of modern and ancient turbidite systems: problems and concepts. In: Leggett, J.K. and Zuffa, G.G. (Eds), Marine Clastic Sedimentology, pp. 1-38. Graham and Trotman; London.
- 93. Nakajima, T., Satoh, M. and Okamura, Y. 1998. Channel-levee complexes, terminal deep-sea fan and sediment wave fields associated with the Toyama Deep-Sea Channel system in the Japan Sea. Marine Geology, 147, 25-41.
- 94. Nelson, C.H., Maldonado, A., Barber, J.H. & Alonso, B. 1991. Modern sand-rich and mud-rich siliciclastic aprons: alternative base-of-slope turbidite systems to submarine fans. 140 PIOTR ŁAPCIK In: Weimer, P. and Link, M.H. (Eds), Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems, pp. 171-190. Springer-Verlag; New York.
- 95. Nemec, W., Alçiçek, M.C. and Özaksoy, V. 2018. Sedimentation in a foreland basin within synorogenic orocline: Palaeogene of the Isparta Bend, Taurides, SW Turkey. Basin Research, 30, 650-670.
- 96. Nemec, W. and Postma, G. 1991. Inverse grading in gravel beds. Abstracts IAS 12th Regional Meeting, p. 38. International Association of Sedimentologists; Bergen.
- 97. Nemec, W., Steel, R.J., Porębski, S.J. and Spinnangr, Å. 1984. Domba Conglomerate, Devonian, Norway: process and lateral variability in a mass flow-dominated, lacustrine fan-delta. In: Koster, E.H. and Steel, R.J. (Eds), Sedimentology of Gravels and Conglomerates. Canadian Society of Petroleum Geologists Memoir, 10, 295-320.
- 98. Nescieruk, P., Paul, Z., Ryłko, W., Szymakowska, F., Wójcik, A. and Żytko. K. 1995. Mapa geologiczna Polski, 1:200 000, arkusz Jasło. Polska Agencja Ekologiczna; Warszawa. [In Polish]
- 99. Nichols, G. 2009. Sedimentology and Stratigraphy, 419 p. Wiley-Blackwell; Oxford. [2nd ed.]
- 100. Normark, W.R., Posamentier, H. and Mutti, E. 1993. Turbidite systems: state of the art and future directions. Reviews of Geophysics, 31, 91-116.
- 101. Olszewska, B. and Szydło, A. 2017. Environmental stress in the northern Tethys during the Paleogene: a review of foraminiferal and geochemical records from the Polish Outer Carpathians. Geological Quarterly, 61, 682-695.
- 102. Pickering, K.T., Corregidor, J. and Clark, J.D. 2015. Architecture and stacking patterns of lower-slope and proximal basin-floor channelised submarine fans, Middle Eocene Ainsa System, Spanish Pyrenees: An integrated outcrop-subsurface study. Earth-Science Review, 144, 47-81.
- 103. Pickering, K.T., Hiscott, R.N., Kenyon, N.H., Ricci Lucchi, F. and Smith, R.D.A. 1995. Atlas of Deep Water Environments: Architectural Style in Turbidite Systems, 334 p. Chapman and Hall; London.
- 104. Piper, D.J.W. 1978. Turbidite muds and silts on deep sea fans and abyssal plains. In: Stanley, D.J. and Kelling, G. (Eds), Sedimentation in Submarine Canyons, Fans and Trenches, pp. 163-176. Dowden, Hutchinson and Ross; Stroudsburg, Pennsylvania.
- 105. Posamentier, H.W. and Walker, R.G. 2006. Deep-water turbidites and submarine fans. In: Posamentier, H.W. and Walker, R.G. (Eds), Facies Models Revisited. SEPM (Society for Sedimentary Geology) Special Publication, 84, 397-520.
- 106. Postma, G., Nemec, W. and Kleinspehn, K.L. 1988. Large floating clasts in turbidites: a mechanism for their emplacement. Sedimentary Geology, 58, 47-61.
- 107. Prélat, A., Covault, J.A., Hodgson, D.M., Fildani, A. and Flint, S.S. 2010. Intrinsic controls on the range of volumes, morphologies, and dimensions of submarine lobes. Sedimentary Geology, 232, 66-76.
- 108. Prélat, A., Hodgson, D.M. and Flint, S.S. 2009. Evolution, architecture and hierarchy of distributary deep-water deposits: a high-resolution outcrop investigation from the Permian Karoo Basin, South Africa. Sedimentology, 56, 2132-2154.
- 109. Prior, D.B., Bornhold, B.D. and Johns, M.W. 1984. Depositional characteristics of a submarine debris flow. Journal of Geology, 92, 707-727.
- 110. Rajchel, J. 1990. Lithostratigraphy of the Upper Paleocene and Eocene sediments from the Skole Units. Zeszyty Naukowe AGH, Geologia, 48, 1-112. [In Polish with English summary]
- 111. Rajchel, J. and Uchman, A. 1998. Ichnological record of palaeoenvironment in the transgressive Miocene deposits of the Skole Unit in the Dubiecko region (SE Poland). Przegląd Geologiczny, 46, 523-529. [In Polish with English summary]
- 112. Reading, H.G. and Richards, M. 1994. Turbidite systems in deep-water basin margins classified by grain size and feeder system. American Association of Petroleum Ggeologists Bulletin, 78, 792-822.
- 113. Reineck, H.-E. and Singh, I.B. 1980. Depositional Sedimentary Environments, 549 p. Springer-Verlag; New York.
- 114. Ricci Lucchi, F. and Valmori, E. 1980. Basin-wide turbidites in a Miocene, over-supplied deep-sea plain: a geometrical analysis. Sedimentology, 27, 241-270.
- 115. Salata, D. and Uchman, A. 2013. Conventional and high-resolution heavy mineral analyses applied to flysch deposits: comparative provenance studies of the Ropianka (Upper Cretaceous-Paleocene) and Menilite (Oligocene) formations (Skole Nappe, Polish Carpathians). Geological Quarterly, 57, 649-664.
- 116. Salata, D. 2014a. Advantages and limitations of interpretations of external morphology of detrital zircon: a case study of the Ropianka and Menilite formations (Skole Nappe, Polish Flysch Carpathians). Annales Societatis Geologorum Poloniae, 84, 153-165.
- 117. Salata, D. 2014b. Detrital tourmaline as an indicator of source rock lithology: an example from the Ropianka and Menilite formations (Skole Nappe, Polish Flysch Carpathians). Geological Quarterly, 58, 19-30.
- 118. Shanmugam, G. 2006. Deep-Water Processes and Facies Models: Implications for Sandstone Petroleum Reservoirs. Handbook of Petroleum Exploration and Production, 5, 475 p. Elsevier; Amsterdam.
- 119. Shanmugam, G. 2008. Deep-water bottom currents and their deposits. In: Rebesco, M. and Camerlenghi, A. (Eds), Developments in Sedimentology, Vol. 60, pp. 59-81. Elsevier; London.
- 120. Shanmugam, G. 2016a. Submarine fans: A critical retrospective (1950-2015). Journal of Palaeogeography, 5, 2-76. FACIES ANATOMY OF A PROGRADATIONAL SUBMARINE CHANELIZED LOBE COMPLEX 141
- 121. Shanmugam, G. 2016b. Slides, Slumps, Debris Flows, Turbidity Currents, and Bottom Currents. Reference Module in Earth Systems and Environmental Sciences, 87 p. Elsevier online; https://doi.org/10.1016/B978-0-12-409548-9.04380-3.
- 122. Shanmugam, G. 2017. Contourites: Physical oceanography, process sedimentology, and petroleum geology. Petroleum Exploration and Development, 44, 183-216.
- 123. Shanmugam, G. and Moiola, R.J. 1991. Types of submarine fan lobes: models and implications. American Association of Petroleum Geologists Bulletin, 75, 156-179.
- 124. Stow, D.A.V. and Bowen, A.J. 1978. Origin of lamination in deep sea, fine-grained sediments. Nature, 274, 324-328.
- 125. Stow, D.A.V. and Bowen, A.J. 1980. A physical model for the transport and sorting of fine-grained sediment by turbidity currents. Sedimentology, 27, 31-46.
- 126. Stow, D.A.V. and Faugères, J.C. 2008. Contourite facies and the facies model. In: Rebesco, M., Camerlenghi, A. and Van Loon, A.J. (Eds), Contourite Research: A Field in Full Development. Developments in Sedimentology Vol. 60, pp. 223-256. Elsevier; London.
- 127. Stow, D.A.V. and Mayall, M. 2000. Deep-water sedimentary systems: new models for the 21st century. Marine and Petroleum Geology, 17, 125-135.
- 128. Strzeboński, P. 2015. Late Cretaceous-Early Paleogene sandy-to-gravelly debris flows and their sediments in the Silesian Basin of the Alpine Tethys (Western Outer Carpathians, Istebna Formation). Geological Quarterly, 59, 195-214.
- 129. Strzeboński, P., Kowal-Kasprzyk, J. and Olszewska, B. 2017. Exotic clasts, debris flow deposits and their significance for reconstruction of the Istebna Formation (Late Cretaceous-Paleocene, Silesian Basin, Outer Carpathians). Geologica Carpathica, 68, 562-582.
- 130. Sumner, E.J., Amy, L. and Talling, P.J. 2008. Deposit structure and processes of sand deposition from a decelerating sediment suspension. Journal of Sedimentary Research, 78, 529-547.
- 131. Ślączka, A. and Kaminski, M.A. 1998. A guidebook to excursions in the Polish Flysch Carpathians. Grzybowski Foundation Special Publication, 6, 11-71.
- 132. Ślączka, A., Renda, P., Cieszkowski, M., Golonka, J. and Nigro, F. 2012. Sedimentary basin evolution and olistolith formation: The case of Carpathian and Sicilian region. Tectonophysics, 568-569, 306-319.
- 133. Talling, P.J. 2013. Hybrid submarine flows comprising turbidity current and cohesive debris flow: deposits, theoretical and experimental analyses, and generalized models. Geosphere, 9, 460-488.
- 134. Talling, P.J., Masson, D.G., Sumner, E.J. and Malgesini, G. 2012. Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59, 1937-2003.
- 135. Tripsanas, E.K., Piper, D.J.W., Jenner, K.A. and Bryant, W.R. 2008. Submarine mass-transport facies: new perspectives on flow processes from cores on the eastern North American margin. Sedimentology, 55, 97-136.
- 136. Uchman, A., Malata, E., Olszewska, B. and Oszczypko, N. 2006. Palaeobathymetry of the Outer Carpathians Basins. In: Oszczypko, N., Uchman, A. and Malata, E. (Eds), Roz wój paleo tektoniczny basenów Karpat zewnętrznych, pp. 83-102. Institute of Geological Sciences, Jagiellonian Univer sity; Kraków. [In Polish with English abstract]
- 137. Walker, R.G. 1984. General introduction: facies, facies sequences and facies models. In: Walker, R.G. (Ed.), Facies Models. Geoscience Canada Reprint Series, 1, 1-9. [2nd ed.]
- 138. Wdowiarz, S. 1949. Structure géologique des Karpates marginales au sud-est de Rzeszów. Biuletyn Państwowego Instytutu Geologicznego, 11, 1-39. [In Polish with French summary]
- 139. Woiński, J. 1994. Mapa geologiczna Polski, 1:200 000, arkusz Rzeszów. Polska Agencja Ekologiczna; Warszawa. [In Polish]
- 140. Wynn, R.B., Kenyon, N.H., Stow, D.A., Masson, D.G. and Weaver, P.P. 2002. Characterization and recognition of deepwater channel-lobe transition zones. American Association of Petroleum Geologists Bulletin, 86, 1441-1462.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4341e444-8a51-4dd6-8b48-54653df604dc