PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of the upper flammability limits for alkanes in air at increased pressures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A method is proposed to predict the upper flammability limits for alkanes in air at increased pressures. The upper flammability limits for methane, ethane, propane and n-butane/air mixtures at ambient temperature and initial pressure of 0.3 MPa–2.0 MPa are identified through the adiabatic flame temperature calculation model. The association of calculated adiabatic flame temperature with pressure is presented to determine the upper flammability limit. Research shows the good agreement between the forecast upper flammability limits with pressure dependence and the experimental upper flammability limit values. The average relative error of the estimated upper flammability limits for alkanes in air at high pressures reaches 2.52%.
Rocznik
Strony
35--41
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wz.
Twórcy
autor
  • College of Chemistry and Materials Bohai University Jinzhou, China
autor
  • College of Chemistry and Materials Bohai University Jinzhou, China
autor
  • College of Chemistry and Materials Bohai University Jinzhou, China
autor
  • College of Chemistry and Materials Bohai University Jinzhou, China
autor
  • College of Chemistry and Materials Bohai University Jinzhou, China
Bibliografia
  • 1. Benjamin, D.B., Lisa, M.M., William, B.A. & John, L.A. (2017). Is reporting “significant damage” transparent? Assessing fire and explosion risk at oil and gas operations in the United States. Energy. Res. Social. Sci., 29, 36–43. DOI: 10.1016/j.erss.2017.04.014.
  • 2. Shan, K., Shuai, J., Yang, G., Meng, W., Wang, C., Zhou, J.X., Wu, X. & Shi, L. (2020). Numerical study on the impact distance of a jet fire following the rupture of a natural gas pipeline. Int. J. Pres. Ves. Pip. 187, 104159. DOI: 10.1016/j.ijpvp.2020.104159.
  • 3. Lee, S. (2020). Quantitative risk assessment of fire & explosion for regasification process of an LNG-FSRU. Ocean. Eng., 197, 106825. DOI: 10.1016/j.oceaneng.2019.106825.
  • 4. Huang, L.J., Wang, Y., Zhang, L., Su, Y., Zhang, Z. & Ren, S.R. (2022). Influence of pressure on the flammability limits and explosion pressure of ethane/propane-air mixtures in a cylinder vessel. J. Loss. Prevent. Proc., 74, 104638. DOI: 10.1016/j.jlp.2021.104638.
  • 5. Kundu, S., Zanganeh, J. & Moghtaderi, B. (2016). A review on understanding explosion from methane-air mixture. J. Loss. Prevent. Proc., 40, 507–523. DOI: 10.1016/j.jlp.2016.02.004.
  • 6. Liu, J., Wang, J.L., Zhang, N. & Zhao, H.B. (2018). On the explosion limit of syngas with CO2 and H2O additions. Int. J. Hydrogen. Energ. 43, 3317–3329. DOI: 10.1016/j.ijhydene.2017.12.176.
  • 7. Keller, J.O., Gresho, M., Harris, A. & Tchouvelev, A.V. (2014). What is an explosion? Int. J. Hydrogen. Energ. 39, 20426–20433. DOI: 10.1016/j.ijhydene.2014.04.199.
  • 8. Li, P.L., Liu, Z.Y., Li, M.Z., Huang, P., Zhao, Y., Li, X. & Jiang, S.K. (2019). Experimental study on the flammability limits of natural gas/air mixtures at elevated pressures and temperatures. Fuel. 256, 115950. DOI: 10.1016/j.fuel.2019.115950.
  • 9. Lazzus, J.A. (2011). Neural network/particle swarm method to predict flammability limits in air of organic compounds. Thermochim. Acta 512, 150–156. DOI: 10.1016/j.tca.2010.09.018.
  • 10. Frutiger, J., Marcarie, C., Abildskov, J. & Sin, G. (2016). Group-contribution based property estimation and uncertainty analysis for flammability-related properties. J. Hazard. Mater., 318, 783–793. DOI: 10.1016/j.jhazmat.2016.06.018.27453258.
  • 11. Wu, M.Q., Shu, G.Q., Chen, R., Tian, H., Wang, X.Y. & Wang, Y. (2017). A new model based on adiabatic flame temperature for evaluation of the upper flammable limit of alkane-air-CO2 mixtures. J. Hazard. Mater., 344, 450–457. DOI: 10.1016/j.jhazmat.2017.10.030.
  • 12. Tian, H., Liu, Y.W., Shu, G.Q., Li, L.Q. & Huo, X. (2019). Theoretical and experimental research on the influence of initial temperature on the flammability of hydrocarbon-CO2 mixture using in organic Rankine cycle. Energy. 167, 939–949. DOI: 10.1016/j.energy.2018.10.136.
  • 13. Van den Schoor, F., Verplaetsen, F. & Berghmans, J. (2008). Calculation of the upper flammability limit of methane/air mixtures at elevated pressures and temperatures. J. Hazard. Mater., 153, 1301–1307. DOI: 10.1016/j.jhazmat.2007.09.088.
  • 14. Benedetto, A.D. (2013). The thermal/thermodynamic theory of flammability: The adiabatic flammability limits. Chem. Eng. Sci., 99, 265–273. DOI: 10.1016/j.ces.2013.05.056.
  • 15. Liaw, H.J. & Li, Z.H. (2022). Mathematical model for describing the influence of initial pressure on the flammability limits of light hydrocarbons at subatmospheric pressures. J. Loss. Prevent. Proc., 77, 104776. DOI: 10.1016/j.jlp.2022.104776.
  • 16. Shebeko, Y.N., Fan, W., Bolodian. I.A. & Navzenya, V.Y. (2002). An analytical evaluation of flammability limits of gaseous mixtures of combustible-oxidizer-diluent. Fire. Safety. J., 37, 549–568. DOI: 10.1016/S0379-7112(02)00007-3.
  • 17. Mashuga, C.V. & Crowl, D.A. (1999). Flammability zone prediction using calculated adiabatic flame temperatures. Process. Saf. Prog., 18, 127–134. DOI: 10.1002/prs.680180303.
  • 18. Vidal, M., Wong, W., Rogers, W.J. & Mannan, M.S. (2006). Evaluation of lower flammability limits of fuel-air-diluent mixtures using calculated adiabatic flame temperatures. J. Hazard. Mater., 130, 21–27. DOI:10.1016/j.jhazmat.2005.07.080.16309829.
  • 19. Wan, X., Zhang, Q. & Lian, Z. (2016). Estimation of the upper flammability limits of hydrocarbons in air at elevated temperatures and atmospheric pressure. Ind. Eng. Chem. Res., 55, 8472–8479. DOI: 10.1021/acs.iecr.6b01012.
  • 20. Wan, X., Zhang, Q. & Shen, S.L. (2015). Theoretical estimation of the lower flammability limit of fuel-air mixtures at elevated temperature and pressures. J. Loss. Prevent. Proc., 36, 13–19. DOI: 10.1016/j.jlp.2015.05.001.
  • 21. Hansen, T.J. & Crowl, D.A. (2009). Estimation of the flammability zone boundaries for flammable gases. Process. Saf. Prog., 29, 209–215. DOI: 10.1002/prs.10367.
  • 22. Arnaldos, J., Casal, J. & Planas-Cuchi, E. (2001). Prediction of flammability limits at reduced pressures. Chem. Eng. Sci., 56, 3829–3843. DOI: 10.1016/S0009-2509(01)00090-2.
  • 24. Smith, J.M., Van, Ness, H.C. & Abbott, M.M. (2001). Introduction to Chemical Engineering Thermodynamics. New York: McGraw-Hill.
  • 25. García, M.A. Gómez, I.D. & Rynkowski, J. (2018). Learning on chemical equilibrium shift assessment for membrane reactors using Gibbs free energy minimization method. Educ. Chem. Eng., 22, 20–26. DOI: 10.1016/j.ece.2017.10.003.
  • 26. Younglove, B.A. & Ely, J.F. (1987). Thermophysical Properties of Fluids. II. Methane, Ethane, Propane, Isobutane, and Normal Butane. J. Phys. Chem. Ref. Data, 16, 577–798. DOI: 10.1063/1.555785.
  • 27. Van den Schoor, F. & Verplaetsen, F. (2006). The upper explosion limit of lower alkanes and alkenes in air at elevated pressures and temperatures. J. Hazard. Mater., A. 128, 1–9. DOI: 10.1016/j.jhazmat.2005.06.043.
  • 28. Vanderstraeten, B., Tuerlinckx, D., Berghmans, J., Vliegen, S., Van’t Oost, E. & Smit, B. (1997). Experimental study of the pressure and temperature dependence on the upper flammability limit of methane/air mixtures. J. Hazard. Mater., 56, 237–246. DOI: 10.1016/S0304-3894(97)00045-9.
  • 29. Cashdollar, K.L., Zlochower, I.A., Green, G.M., Thomas, H. & Hertzberg, M. (2000). Flammability of methane, propane, and hydrogen gases. J. Loss. Prevent. Proc., 13, 327–340. DOI: 10.1016/S0950-4230(99)00037-6.
  • 30. Chen, J.R. & Liu, K. (2003). Simple and safe method for determining explosion limits at elevated pressures. Aiche. J., 49, 2427–2432. DOI: 10.1002/aic.690490917.
  • 31. Norman, F., Van der Schoor, F. & Verplaetsen, F. (2006). Auto-ignition and upper explosion limit of rich propane-air mixtures at elevated pressures. J. Hazard. Mater., 137, 666–671. DOI: 10.1016/j.jhazmat.2006.03.018.16716499
Uwagi
Błędna numeracja bibliografii brak poz. 23
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4341134b-a15d-4231-bf02-bc25dade8f59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.