PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experience of the Crane Steel Wire Ropes Non-Destructive Tests

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The non-destructive tests (NDT) of the steel wire ropes put on the crane pulley blocks comprise more than a half of our NDT services. The intensive utilization of cranes often leads to critical situations endangering health and safety at work. The operators are forced to provide safety use of the cranes due to new cranes constructions, new construction of the block pulley and put on the new steel wire rope constructions. The NDT tests of the crane steel wire ropes are coordinate by the Standard ISO 4309. We have experienced only the crane steel wire ropes with an individual wire rope core during our NDT tests so far. The visual NDT test usually used is ineffective to the steel wire ropes with this construction. Based on our previous experience it can be confirmed that surface ruptures are produced after the disintegration of wires inside of a rope; it often leads to the rope abruption during its operation. The reduction of the pulley block dimensions often leads to the problem of the multi-axis rope bending. This kind of the rope line in the pulley block causes the increase of the fretting fatigue of the wires and the rope strands. The same type of the stress is created when the dead ends of the rope are badly constructed.
Twórcy
  • Technical University of Košice, Faculty of mining, ecology, process control and geotechnology, Testing laboratory of steel wire ropes, Park Komenského 14, 043 84 Košice, Slovak Republic
  • Technical University of Košice, Faculty of mining, ecology, process control and geotechnology, Testing laboratory of steel wire ropes, Park Komenského 14, 043 84 Košice, Slovak Republic
autor
  • Institute of Materials Research, Slovak Academy of Science, Watsonova 47, 040 01 Košice, Slovak Republic
Bibliografia
  • 1. Yaman O. and Karakose M., Auto Correlation Based Elevator Rope Monitoring and Fault Detection Approach with Image Processing: International artificial intelligence and data processing symposium (IDAP) 2017.
  • 2. Kulka J., Mantic M., Kopas M. and Faltinova E., Assessing the need for rope replacement in crane lifting equipment after change of crane operational parameters: Advances in science and technology-research journal 2017, 11(2), 226-230.
  • 3. Kulka J., Mantic M., Faltinova E., Molnar V., Fedorko G., Failure analysis of the foundry crane to increase its working parameters, Eng. Fail. Anal. 88 (2018) 25–34.
  • 4. Kulka J., Mantic M., Kopas M., Faltinova E., Locking the movement of persons on the bridge crane: Advances in science and technology-research journal 2018, 12 (2), 260-265
  • 5. Vukelic G. and Vizentin G., Damage-Induced Stresses and Remaining Service Life Predictions of Wire Ropes: Applied sciences-basel 2017, 7(1), 107.
  • 6. Singh R. P., Mallic M. and Verma M. K., Studies on failure behaviour of wire rope used in underground coal mines: Engineering failure analysis 2016, 70, 290-304.
  • 7. Manka E., Slomion M., Matuszewski M., Constructional features of ropes in functional units of mining shaft hoist: Acta mechanica et automatica 2018, 12(1), 66-71.
  • 8. Hrabovsky. L., Michalik. P., A tension equalizer in lift carrying ropes: Advances in science and technology-research journal 2017, 11 (4), 326-332.
  • 9. Cereska A., Zavadskas E. K., Bucinskas V., Podvezko, V. and Sutinys E., Analysis of Steel Wire Rope Diagnostic Data Applying Multi-Criteria Methods: Applied sciences-basel 2018, 8 (2), 260.
  • 10. Jachowicz T.; Sikora J.; Dulebova L.: Investigating Effects Of Prodegradant Content On Selected Properties Of Polymer Composite Materials. Environ Eng Manag J 2017, 16 (12), 2879-2886.
  • 11. Strohmandl. J. and Tomek M., Possibilities of Reducing Emergency Situations during the Operation of Internal Environmental Transport Systems: Proceedings of the 20th international scientific conference transport means 2016, 729-734.
  • 12. Strohmandl J. and Cempirek M., Experimental Measurements Used to Reduce Emergency Situations of Environmental Continuous Transport: Proceedings of the 20th international scientific conference transport means 2016, 835-839.
  • 13. Zhang W., Zhang D.S., Wang H.Z. and Cheng J.X., Comprehensive Technical Support for High- Quality Anthracite Production: A Case Study in the Xinqiao Coal Mine, Yongxia Mining Area, China: Minerals 2016, 5, 4, 919 – 935.
  • 14. Piskoty G., Affolter C., Sauder M., Nambiar M. and Weisse B., Failure analysis of a ropeway accident focussing on the wire rope’s fracture load under lateral pressure: Engineering failure analysis 2017, 82, 648 -656.
  • 15. Zhang D. K., Feng C. A., Chen K., Wang D. G., and Ni X., Effect of broken wire on bending fatigue characteristics of wire ropes: International journal of fatigue 2017, 103, 456 – 465.
  • 16. Molnár V., Boroška J., Dečmanová J., Mechanical properties of steel rope wires -– quality test assurance, Acta Montan. Slovaca. 15 (2010) 23–30.
  • 17. Pawlowski B., Krawczyk J., Bala P., Cios G. and Tokarski T., The analysis of the water-expanded rock bolts ruptures during pressure test: Archives of mining sciences 2017, 62 (2), 423-430.
  • 18. Zhao B., Zhao Z. B., Hua G. and Liu C., A new low-carbon microalloyed steel wire in drilling rope: Materials science and technology 2016, 32, 7, 722-727.
  • 19. Rudawska A., Debski H., Experimental and numerical analysis of adhesively bonded aluminium alloy sheets joints, Eksploat. I Niezawodn. – Maint. Reliab. (2011) 4–10.
  • 20. Wang S. Q., Zhang D. K., Hu N. N. and Zhang J.L., Effect of Stress Ratio and Loading Frequency on the Corrosion Fatigue Behavior of Smooth Steel Wire in Different Solutions: Materials 2016, 9(9), 750.
  • 21. Chang X.D., Peng Y.X., Zhu Z.C., Gong X.S., YU Y.F., Mi Z.T. and XU C.M., Experimental investigation of mechanical response and fracture failure behavior of wire rope with different given surface wear: Tribology international 2018, 119, 208-221.
  • 22. Guo Y.B., Zhang D.K., Chen K., Feng C. and Ge S. R., Longitudinal dynamic characteristics of steel wire rope in a friction hoisting system and its coupling effect with friction transmission: Tribology international 2018, 119, 731-743.
  • 23. Kou B.F., Liu Q. Z. and Li N., Research on transverse vibration characteristics of rope change device with clamping chain transmission in lifting system: Journal of vibroengineering 2017, 19 (2), 894 – 907.
  • 24. Flegner P., Kacur J., Durdan M., Laciak M., Stehlikova B. and Pastor M., Significant damages of core diamond bits in the process of rocks drilling: Engineering failure analysis 2016, 59, 354-365.
  • 25. Wang C. M., Wang J. S., Du B., Fang L.T. and Zhang S.L., The Influence to Mine Hoisting Steel Wire Rope Tension and Deformation from Velocity and Acceleration: International conference on manufacturing science and information engineering (ICMSIE 2016) 2016, 296-306.
  • 26. Wang J.S., Wang C.M. and Du B., The influence to mine hoisting steel wire rope tension and deformation from load and elastic modulus: Proceedings of the 5th international conference on civil engineering and transportation 2015, 30, 1627-1635.
  • 27. Peng Y.X., Chang X.D., Sun S.S., Zhu Z.C., Gong X.S., Zou S.Y., Xu W.X. and Mi Z.T., The friction and wear properties of steel wire rope sliding against itself under impact load: Wear 2018, 400, 194-206.
  • 28. Liang B., Zhao Z.W., Wu X.F. and Liu H. Q., The establishment of a numerical model for structural cables including friction: Journal of constructional steel research 2017, 139, 424-436.
  • 29. Peng Y.X., Chang X.D., Sun S.S., Zhu Z.C., Gong X.S., Zou S.Y., Xu W.X., Mi Z.T., The friction and wear properties of steel wire rope sliding against itself under impact load: WEAR, 400, 194-206.
  • 30. Vaclav S., Sivtsev N.S. and Senderska K., Investigation of stress-strain state of a workpiece at gauge burnishing of its holes: Advances in science and technology-research journal 2017, 11, 211-222.
  • 31. Kalentev E., Vaclav S., Bozek P., Tarasov V. and Korshunov A., Numerical analysis of the stress-strain state of a rope strand with linear contact under tension and torsion loading conditions: Advances in science and technology-research journal 2017, 11, 211-222.
  • 32. Ivanco V., Kmet S., Fedorko G., Finite element simulation of creep of spiral strands, Eng. Struct. 117, 2016, 220–238.
  • 33. Lonkwic P., Rozylo, P., Debski, H. Numerical and experimental analysis of the progressive gear body with the use of finite-element method. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 2015 17(4), pp. 544-550.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-433fcbae-3145-48cb-a0f9-34b5081d8d22
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.