Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rutyna : budowa, właściwości

Treść / Zawartość
Warianty tytułu
Rutin : structure and properities
Języki publikacji
Flavonoids commonly can be found in plants. They protect them against various microorganisms or insects [1]. Flavonoids demonstrate not only antioxidant properties, but also prevent the development of cancer [2]. This is attributed to their ability to induce apoptosis of tumor cells. The structure of this type of compound is based mainly on the flavone skeleton with the keto group in position 4 (Fig. 2). The difference in structure of flavonoids consists mainly in the number and nature of the substituents. Flavonoid compounds have a 15-carbon atoms skeleton, consisting of two aromatic rings (A and B) connected to 3 carbon atoms, by oxygen contained within the heterocyclic ring C (Fig. 2) [5]. Structural difference of the pyranose ring C and position of the phenyl ring B are the basis for the division flavonoids into seven groups (Fig. 3) [6]. In recent years a number of work focused on the study of flavonoids complexes with ions of copper(II) or iron(II) were published [20–22]. One of the most important flavonoids is rutoside, which has a number of important biological activities. One of the most important function of this compound is inhibition hyaluronidase activity by reducing the permeation and improveing the flexibility of blood vessels. It is used to treat diseases such as diabetic retinopathy, inflammation of the mucous membranes of the nose, atherosclerotic diseases or disorders of the venous circulation. Rutoside forms a relatively stable complex with ions of iron(II) or calcium(II) as well as nickel(II) and especially with copper(II). This type of complex protect from rapid degradation/oxidation of L-ascorbic acid [14, 15]. In 2011, Sak-Bosnar and colleagues proposed the structure of rutoside complex with ions of copper (II) (Fig. 9) [20]. In the same year was published work suggesting that a key role in this type of mechanism play hydroxyl group at the 3 ‚carbon atom, which becomes a „carrier” of the electron/radical (Fig. 5) [19].
Opis fizyczny
Bibliogr. 26 poz., rys., schem., tab., wykr.
  • Uniwersytet Gdański, Wydział Chemii, Pracownia Chemii Cukrów, ul. Wita Stwosza 63, 80-308 Gdańsk
  • Uniwersytet Gdański, Wydział Chemii, Pracownia Chemii Cukrów, ul. Wita Stwosza 63, 80-308 Gdańsk
  • Uniwersytet Gdański, Wydział Chemii, Pracownia Chemii Cukrów, ul. Wita Stwosza 63, 80-308 Gdańsk
  • Uniwersytet Gdański, Wydział Chemii, Pracownia Chemii Cukrów, ul. Wita Stwosza 63, 80-308 Gdańsk
  • Uniwersytet Gdański, Wydział Chemii, Pracownia Chemii Cukrów, ul. Wita Stwosza 63, 80-308 Gdańsk
  • [1] B.A. Bohm, Introduction to Flavonoids. Chemistry and Biochemistry of Organic Natural Products, CRC Press, 1998.
  • [2] Ł. Glinka, J. Ochocki, Pol. J. Cosmet., 2004, 2, 70.
  • [3] S.-L. Hwang, P.-H. Shih, G.-Ch. Yen, J. Agric. Food Chem., 2012, 60(4), 877.
  • [4] S. van Waalwijk, B. van Doorn-Khosrovani, J. Janssen, L.M. Maas., R.W. Godschalk, Carcinogene¬sis, 2007, 28(8), 1703.
  • [5] X. He, D. Liu, R.H. Liu, J. Agric. Food Chem., 2008, 56(20), 9337.
  • [6] R.H. Liu, J. Nutr., 2004, 134, 3479.
  • [7] J.A. Ross, C.M. Kasum, Annu. Rev. Nutr., 2002, 22, 19.
  • [8] F. Galeotti, E. Barile, P. Curir, M. Dolci, V. Lanzotti, Phytochem. Lett., 2008, 1, 44.
  • [9] M. Balcerek, I. Matławska, Herba Polonica, 2006, 52(3).
  • [10] A.J. Dugas, Jr., J. Castañeda-Acosta, G.C. Bonin, K.L. Price, Nikolaus H. Fischer, G.W. Winston, J. Nat. Prod., 2000, 63(3), 327.
  • [11] a) U. Takahama, Phytochem., 1985, 24, 1443; b) G. Cao, E. Sofic, R.L. Prior, Free Radicals Biol. Med., 1997, 22, 749.
  • [12] H. Schneider, A, Schwiertz, M.D. Collins, M. Blaunt, Archiv. Microbiol., 1999, 171, 81.
  • [13] N. Lucci, P. Mazzafera, Can. J. Plant Sci., 2009, 89(5), 895.
  • [14] O. Ortolani, A. Conti, A.R. De Gaudio, M. Masoni, G. Novelli, Shock., 2000, 13(1), 14.
  • [15] J.R. Soberón, M.A. Sgariglia, D.A. Sampietro, E.N. Quirogo, M.A. Vattuone, J. Appl. Microbiol., 2007, 102(6), 1450.
  • [16] U. Undeğer, S. Aydin, A.A. Başaran, N. Başaran, Toxicol. Lett., 2004, 151(1), 143.
  • [17] K.M. Krishna, A. Annapurna, G.S. Gopal, C.R. Chalam, K. Madan, V.K. Kumar, G.J. Prakash, Can. J. Physiol. Pharmacol., 2005, 83(4), 343.
  • [18] F. Pu, K. Mishima, K. Irie, K. Motohashi, Y. Tanaka, K. Orito, T. Egawa, Y. Kitamura, N. Egashira, K. Iwasaki, M. Fujiwara, J. Pharmacol. Sci., 2007, 104(4), 329.
  • [19] M. Ghiasi, M.M. Heravi, Carbohydr Res., 2011, 346, 739.
  • [20] P.M. Aron, J.A. Kennedy, Mol. Nutr. Food Res., 2008, 52, 79.
  • [21] B. Halliwell, Cardiovasc. Res., 2007, 73, 341.
  • [22] R. Guo, P. Wei, W. Liu, J. Pharm. Biomed. Anal., 2007, 43, 1580.
  • [23] J. Sanhueza, J. Valdes, R. Campos, A. Garrido, A. Valenzuela, Res. Commun. Chem. Pathol. Pharmacol., 1992, 78, 211.
  • [24] M. Medvidovic-Kosanovic, M. Samardžic, N. Malatesti, M. Sak-Bosnar, Int. J. Electrochem. Sci., 2011, 6, 1075.
  • [25] Y. Bai, F. Song, M. Chen, J. Xing, Z. Liu, S. Liu, Anal Sci., 2004, 20, 1147.
  • [26] V. Uivarosi, S.F. Barbuceanu, V. Aldea, C. Arama, M. Badea, R. Olar, D. Marinescu, Molecules., 2010, 15, 1578.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.